Introduction
Colostrum management is the single most important management factor in determining calf health and survival. All calves must receive sufficient colostrum immediately after birth to support their growth and optimise their welfare. Calves that do not receive adequate quantity or quality colostrum in the right time frame will be compromised and more likely to contract infection.

1. What is colostrum?
2. What is different about colostrum compared to normal milk?
3. Why is colostrum important?
4. How much colostrum should be fed?
5. How is colostrum quality assessed?
6. How do you determine if the calf has received sufficient colostrum?
7. What factors affect the transfer of immunoglobulins?
8. What factors affect the level of immunoglobulins in colostrum?
9. Colostrum contamination.
10. Can colostrum replacers be used?
11. How do you store colostrum?
What is colostrum?

Colostrum is the first milk produced by the cow. The next two to eight milkings are called ‘transition milk’.

What is different about colostrum compared to normal milk?

Unlike whole milk, colostrum contains many important substances for calf health such as immunoglobulins (antibodies), energy, cytokines, growth factors, and increased levels of vitamins and minerals. In addition, colostrum has a higher fat and protein content than whole milk.

Table 2. The difference in nutrient composition between colostrum, transition milk and whole milk.

<table>
<thead>
<tr>
<th></th>
<th>Milking number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Colostrum</td>
</tr>
<tr>
<td>Total solid, %</td>
<td>23.9</td>
</tr>
<tr>
<td>Fat, %</td>
<td>6.7</td>
</tr>
<tr>
<td>Protein, %</td>
<td>14.0</td>
</tr>
<tr>
<td>Antibodies, %</td>
<td>6.0</td>
</tr>
<tr>
<td>Lactose, %</td>
<td>2.7</td>
</tr>
<tr>
<td>Minerals, %</td>
<td>1.11</td>
</tr>
<tr>
<td>Vitamin A, μg/dL</td>
<td>295</td>
</tr>
</tbody>
</table>

Why is colostrum important?

A calf is born without protective immunoglobulins/antibodies to protect it against disease. Colostrum is an extremely rich source of these antibodies. The calf depends on the successful passive transfer of these maternal antibodies from the colostrum in order to defend itself against infection until its own active immunity begins to work.

KEY POINT:

Calves that do not receive colostrum are at an increased risk of developing scour and 74 times more likely to die in the first 21 days of life.

Immunoglobulin status of dead or sick calves

![Figure 2. Zinc sulphate turbidity test results from AFBI and DAFM (2015). Adequate colostral immunity is defined as a ZST result ≥20 units.](image)
How much colostrum should be fed?

By feeding calves colostrum by bottle or stomach tube you can be sure of the quantity they have consumed.

The first feed of colostrum should be at least three litres. This should be fed within the first two hours of birth. This provides the calf with immunity to disease before pathogenic organisms can become established in the calf’s gut.

Another guide to colostrum feeding is calf birth weight. As this varies depending on breed and gestation length the rule is to feed 8.5% of their birth bodyweight for their first feed (e.g. 35 kg calf requires three litres).

An easy way to remember the best practise for colostrum feeding is the ‘Colostum 1,2,3’ rule from Animal Health Ireland. (See Colostrum Management, http://animalhealthireland.ie/?page_id=387)

How is colostrum quality assessed?

Colostrum quality is measured by the amount of immunoglobulin G (IgG) it contains. IgG concentration must be greater than 50 g/L. The quality of colostrum is highest when collected immediately after the cow calves, with the immunoglobulin content halved by the second milking.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Measure of quality (milligrams of IgG in each ml of colostrum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>60 mg/ml</td>
</tr>
<tr>
<td>Good</td>
<td>50 mg/ml</td>
</tr>
<tr>
<td>Poor</td>
<td>30 mg/ml</td>
</tr>
</tbody>
</table>

If colostrum quality is poor, it should not be used for the calf’s first feed. Instead it can be fed as the calf’s second or third feed.

Most on-farm methods involve the indirect measurement of colostrum quality by using either a Brix refractometer or colostrometer. Visually assessing colostrum is not an accurate method of determining its quality.

Colostrum 1 - 2 - 3 for dairy calves

1. **Use colostrum from the first milking for the first feed**
2. **Give colostrum within two hours from the calf’s birth**
3. **Give at least three litres**
Colostrum

Feeding of the Newborn

KEY FACTS:

- Calves left to suckle the dam are less likely to receive adequate transfer of immunity.

<table>
<thead>
<tr>
<th>Brix refractometer</th>
<th>Colostrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A refractometer is a pocket sized device that uses light to determine the density of a liquid. For measuring colostrum, a refractometer calibrated in the Brix scale is used and values are read as a percentage. Brix refractometers are quite accurate in measuring IgG levels in colostrum. A score of 22% is the cut off for detecting good quality colostrum (fresh or frozen) that can be fed to calves for their first feed.</td>
<td>A colostrometer is a device which floats in a sample of colostrum and measures the specific gravity. As a rule, the more IgG in the colostrum the denser it will be and the higher the specific gravity reading. This means the colostrometer will float higher in a good sample and lower in a poorer sample. Colostrometers tend to overestimate the quality of colostrum. In addition, colostrometer readings are affected by temperature, frothiness of the sample and the fat/total solid content.</td>
</tr>
</tbody>
</table>

Brix refractometers are quite accurate in measuring IgG levels in colostrum. A score of 22% is the cut off for detecting good quality colostrum (fresh or frozen) that can be fed to calves for their first feed.

A colostrometer is a device which floats in a sample of colostrum and measures the specific gravity. As a rule, the more IgG in the colostrum the denser it will be and the higher the specific gravity reading. This means the colostrometer will float higher in a good sample and lower in a poorer sample. Colostrometers tend to overestimate the quality of colostrum. In addition, colostrometer readings are affected by temperature, frothiness of the sample and the fat/total solid content.

How do you determine if the calf has received sufficient colostrum?

If calves do not get enough colostrum soon after they are born, they will have failure of passive transfer (FPT) of antibodies. Failure of passive transfer markedly increases calf morbidity (disease incidence) and mortality in calves, therefore being able to determine if a calf has received adequate antibody protection from colostrum is extremely useful. This can be done by measuring the Ig levels in calf blood serum. The Zinc Sulphate Turbidity Test is routinely used by the Department of Agriculture, Food and Marine’s Regional Veterinary Laboratories to detect FPT. The results of this test are measured in ZST units.

KEY QUESTION:

Should calves be fed pooled colostrum?

Research has shown there is no difference in calf serum IgG or calf weight gain between calves fed pooled (mixed colostrum from various sources) or individual dam colostrum. However, feeding pooled colostrum is a biosecurity risk and should be undertaken with careful consideration and extreme caution. Pooling of colostrum can lower colostrum quality due to dilution, therefore only pool “like with like”, i.e. high quality with high quality.
What factors affect the transfer of immunoglobulins?

The transfer of immunoglobulins to the calf depends on a number of factors including:

- The quality of the colostrum.
- The calf’s ability to absorb IgG (affected by the length of time from birth to first feed).
- The volume of colostrum ingested.

The ability of the calf to absorb IgG is highest in the first two hours after birth, but after six hours this ability progressively declines. The calf’s absorptive ability completely ceases 24 hours after birth. Therefore, the earlier a calf is fed after birth, the greater the level of IgG absorption.

Key Points:

- Continuous feeding of smaller amounts of colostrum and/or transition milk throughout the first two weeks of life is often practiced, and has been associated with reduced diarrhoea in dairy calves.

Figure 3. Reduction in immunoglobulin absorption with increasing calf age. Adapted from Blomquist, 2009.

What factors affect the level of immunoglobulins in colostrum?

There are a number of factors that influence the volume and the immunoglobulin concentration of the colostrum from a dairy cow. These include:

- Lactation number/parity.
 - First and second lactation cows produce colostrum with a lower IgG concentration than cows in their third and fifth lactation.
- Breed of cow.
- Length of the non-lactating period (if less than three weeks).
- Time interval from calving to first milking
 - Colostrum harvested later than nine hours post-calving has a lower IgG concentration than colostrum harvested before this time.
 - Colostrum produced by cows that are milked up to six hours post-calving has the greatest mean IgG concentration.
- Month of calving.
 - Later calving cows (April/May) produce colostrum with a lower IgG concentration than cows calving in the earlier spring months or in the autumn months.
- Colostral weight.
 - Colostral IgG concentration decreases linearly with increasing colostral weight (1.7g/l per kg increase).

Key Point:

Research has shown that colostral IgG concentration decreases by 3.7% each hour post calving.
HOW TO:
Stomach tube a calf

Where calves are weak or poor drinkers, stomach tubing is a quick and efficient method of getting colostrum into the calf. It is not uncommon for farmers to stomach tube all calves immediately after birth. Great care must be taken as incorrect stomach tubing can severely damage the calf and can be fatal.

The process of stomach tubing

1. Determine the correct length of tube by measuring the distance from the tip of the calf’s nose to the point of its elbow behind the front leg, usually 45 cm or more.

2. The tip of the stomach tube should be smooth and not damaged or sharp. Place the tube in warm water to make it more pliable. Dip the tube into a lubricant, such as vegetable oil, and dip the tip of the tube into colostrum.

3. Once the calf’s mouth is opened, the empty tube is passed slowly along the tongue to the back of the mouth. Aim to the left side of the throat. When the tube is over the back of the tongue, the calf starts chewing and swallowing it and the tube is then passed down into the oesophagus.

Never force the tube; if it is being done correctly it should slide in easily.

4. If the tube is properly positioned, the rings of the trachea (leading into the lungs) and the rigid enlarged oesophagus can be felt easily. The exposed end of the tube should be checked for spurts of air, which indicates that the tube has gone into the lungs.

5. Once in place correctly, the tube can be unclipped or straightened out or the container can be tipped up to allow liquid to flow down into the stomach. Liquids should be at body temperature (38°C) to prevent shock and to optimise antibody absorption. It can take three minutes or more to allow sufficient fluid to be administered. The calf will regurgitate less with a slow flow rate.

6. When feeding is finished, the tube should be slowly removed. The tube should be cleaned and sanitised, then allowed to drain and dry.
Colostrum contamination.

Bacterial contamination of colostrum often occurs on farms, with two associated concerns:

1. The risk of transfer of infection to calves.
2. Decreased absorption of IgG in the intestines.

Calves fed colostrum with extremely high levels of bacteria (>1,000,000 cfu/ml) have decreased serum IgG concentrations at 24 hours, whereas calves fed colostrum with bacteria levels of 100,000 cfu/ml achieve adequate passive transfer.

KEY POINT:
Best practice suggests that the total bacterial count of colostrum should not exceed 100,000 cfu/ml and faecal coliforms should be below 10,000 cfu/ml.

HOW TO:
Achieve desirable bacterial counts in colostrum

Desirable bacterial counts can be achieved through hygienic colostrum collection, avoiding bacterial contamination, immediately refrigerating or freezing surplus colostrum or implementing heat treatments of colostrum. Storage of colostrum at room temperature increases the growth of bacteria.

Heat treatment (pasteurisation) of colostrum at 60°C for 30 or 60 minutes reduces the bacterial count, preserves IgG concentration and increases the apparent efficiency of absorption of IgG compared to calves fed raw colostrum. In addition, calves fed heat treated colostrum are at lower risk of illness.

Can colostrum replacers be used?

The ideal source of colostrum is the calf’s own dam for two main reasons:

i) Concerns regarding the potential spread of Johne’s and other diseases.
ii) The calf will acquire immunity to fight pathogenic organisms encountered on the home farm.

Next best to the calf’s own dam is colostrum from cows in the same herd. Seek advice from your vet if you do not wish to use or have insufficient maternal colostrum on your own farm.

Colostrum replacement products (CR) are available. However whey protein concentrate (WPC), used as a colostrum substitute, is less effective in preventing neonatal morbidity and mortality. Additionally, the ability of commercial CR to prevent FPT in calves is inconsistent. Therefore colostrum replacers should only be used as a last resort, and freezing any excess high quality colostrum should be routine on farm.

Table 3. Colostrum versus colostrum replacer: first 29 days of life.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Colostrum</th>
<th>Colostrum replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total DMI, kg</td>
<td>15.7</td>
<td>13.7</td>
</tr>
<tr>
<td>Milk replacer DMI, kg</td>
<td>10.7</td>
<td>9.8</td>
</tr>
<tr>
<td>Starter DMI, kg</td>
<td>5.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Feed efficiency (gain:feed)</td>
<td>0.43</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Source: Jones et al. JDS 2004.

How do you store colostrum?

Colostrum can be stored at 4°C for two days without negatively affecting the absorption of colostral IgG by the calf. Storing colostrum at any higher temperature leads to decreased absorption of IgG due to an increase in bacterial contamination.
Colostrum

Feeding of the Newborn

Frozen colostrum can be stored at -18 to -25°C for at least a year without changing its quality.

HOW TO: Thaw colostrum

Colostrum must be slowly thawed at temperatures below 50°C, i.e. in a water bath, in order to not affect its quality. Cold, refrigerated colostrum should be warmed in a water bath before feeding. This helps increase antibody uptake by the calf. Colostrum should be thawed (if necessary) and warmed to body temperature (38°C) in warm (maximum 50°C) water.

A microwave should not be used to thaw colostrum as it can cause slight coagulation of the proteins in the colostrum. In addition, lower volume and total protein content are associated with microwave thawed colostrum.

Hey Point:

Temperatures above 50°C cause colostral proteins, including immunoglobulins, to denature. Therefore, colostrum should never be thawed in boiling water.

Defrost colostrum slowly using a gentle heat of not more than 50°C

Colostrum checklist

• Always remember- Colostrum 1, 2, 3!
• The calf’s own mother is the ideal source of colostrum.
• Stomach tubing is a successful method of colostrum administration.
• Colostrum can be stored at 4°C for two days.
• When the colostrum is frozen, thaw slowly in water bath <50°C.
• Limit colostrum contamination for maximum IgG absorption.

The four Qs of colostrum feeding

<table>
<thead>
<tr>
<th>Quality</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measure IgG levels</td>
<td>• Feed a minimum of three litres per calf</td>
</tr>
<tr>
<td>• Review factors influencing quality</td>
<td></td>
</tr>
<tr>
<td>• Maintain good hygiene</td>
<td></td>
</tr>
<tr>
<td>• Feed or freeze quickly</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quickly</th>
<th>Quietly</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Feed within first six hours (ideally within two hours)</td>
<td>• Minimise stress to maximise IgG absorption</td>
</tr>
</tbody>
</table>