Pasture Profit Index: Prototype & industry feedback

M. McEvoy, M. O’Donovan, N. McHugh and L. Shalloo
Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork
Pasture Profit Index - Overview

• Total merit index developed to assist in cultivar selection
 • Assigns an economic value to important traits of grass performance
 • Define the total economic merit of a cultivar (€ per ha per year)
 • Rank cultivars on Total Economic Merit

• Traits of importance:
 • Seasonal DM yield
 • Quality
 • Silage DM Yield
 • Persistency
Economic Values

- Moorepark Dairy Systems Model (MDSM)
 - Simulates a model dairy farm across 12 months
 - Includes
 - Herd parameters, nutritional requirements, land use
 - Total inputs and outputs
 - Receipts
 - Variable and fixed costs (Shalloo et al., 2004)
 - Base assumptions
 - Spring calving herd
 - 365 day calving interval
 - Milk price of 27c/l
 - 40 ha farm

- Economic values updated December 2013
Grass Growth and Feed Demand Curve
(2.5 cows/ha)

Spring
€0.16/ kg DM

Feed Demand

Surplus

Summer
€0.04/ kg DM

Grass Growth

Autumn
€0.11/ kg DM

Deficit

0 20 40 60 80 100 120

kg DM/ha/day

The Irish Agriculture and Food Development Authority
Economic Value – Persistency

• Determine the change in sward lifetime relative to base
 • Standard (base) 10-yr sward longevity
 • Cost of reseeding (€672.30 per ha)

• Measurement of persistency
 • Ground score (GS) change determined using DAFM data (Y2 – Y1)
 • Apply loss in production to GS change
 • At 50% of it’s original DM yield sward is due to be reseeded

• Cultivar does not reach 50% of initial yield for 10 years or longer = (-€672/10) + 67.23 = €0

• Cultivar reaches 50% of initial yield after 7 years = (-€672/7) + 67.23 = -€29
Pasture Profit Index

€ per ha/year
Defining Base Values

- Necessary to quantify the economic effect of each cultivar for each trait
 - If cultivar performance exceeds base value – positive effect
 - If cultivar performance falls short of base value – negative effect
- Where possible use farm data to define base values
 - DM yield (9.1 t DM/ha) average level of on-farm production (Shalloo et al. 2009)
 - Persistency – standard is 10 years at farm level
- Alternatively use average data from DAFM trials
 - Silage DM yield
 - Quality
Prototype 2014

- Economic values applied to cultivar data
- Data generated in DAFM plot trials
- Frequent cutting (FC) trials
 - Seasonal yield, quality, persistency data
 - 2010 sowing (2011 & 2012 harvest years)
 - 4 sites (3 reps per site)
- General Purpose trials
 - Silage data
- Combine biological data and economic values
- 2014 Recommended List cultivars with FC data presented
<table>
<thead>
<tr>
<th>Rank</th>
<th>Variety</th>
<th>Ploidy</th>
<th>Heading date</th>
<th>Total €/ha per year</th>
<th>PPI Sub-Indexes (€ per ha per year)</th>
<th>Breeder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DM yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spring</td>
<td>Summer</td>
</tr>
<tr>
<td>1</td>
<td>Dunluce</td>
<td>T</td>
<td>29-May</td>
<td>226</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>AberMagic</td>
<td>D</td>
<td>30-May</td>
<td>185</td>
<td>66</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>Magician</td>
<td>T</td>
<td>21-May</td>
<td>173</td>
<td>61</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Trend</td>
<td>T</td>
<td>24-May</td>
<td>160</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Navan</td>
<td>T</td>
<td>6-Jun</td>
<td>147</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>Aspect</td>
<td>T</td>
<td>5-Jun</td>
<td>138</td>
<td>34</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>Delphin</td>
<td>T</td>
<td>1-Jun</td>
<td>117</td>
<td>23</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>AberCraigs</td>
<td>T</td>
<td>4-Jun</td>
<td>92</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>Twymax</td>
<td>T</td>
<td>6-Jun</td>
<td>89</td>
<td>-4</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>Glencar</td>
<td>T</td>
<td>2-Jun</td>
<td>78</td>
<td>25</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Tyrella</td>
<td>D</td>
<td>3-Jun</td>
<td>48</td>
<td>47</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>Portstewart</td>
<td>D</td>
<td>5-Jun</td>
<td>44</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>Mezquita</td>
<td>D</td>
<td>6-Jun</td>
<td>30</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>Malambo</td>
<td>D</td>
<td>10-Jun</td>
<td>22</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>Denver</td>
<td>D</td>
<td>2-Jun</td>
<td>14</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>Soriento</td>
<td>D</td>
<td>3-Jun</td>
<td>8</td>
<td>3</td>
<td>32</td>
</tr>
</tbody>
</table>
Summary

• Focus on important traits for an Irish grass based production system
• Only cultivars on Recommended List have a PPI value
 • Must have frequent cutting data
 • Currently 16 cultivars ~50% of Recommended List cultivars
 • As more cultivars get a PPI – better information on true rankings
 • 2015
 • 2016
 • Rankings will change as more cultivars are included
• Reliability value will be included going forward
 • identify stable cultivars and/or those with more data available