Rotations and Break Crops: Setting the Scene

Dermot Forristal, John Carroll, Faisal Zahoor

Teagasc
Oak Park Crops Research
Outline

- Rotations/ break crops - why now?
- Teagasc Research 2014 / 2015
- Knockbeg Systems/Rotation Trial:
 - Effect of Break crops on Cereal yields
 - Crop Margins
- Lessons for future
Why Rotations/Breaks Now?

Ireland Crop Production:
- In the past: Grass rotations on 'Mixed' farms
- Sugar beet gone
- Break crops: 9.6% of arable area
- Continuous cereal production for 20-35 years

Benefits of Rotations
- Fertility
- Disease breaks
- Weed control (grass weeds)
- More crop / market choices

EU regulations and support
CROPQUEST
- DAFM funded desk study (2 year - half way through)
- Review opportunities for break crops.
- Including new market options.
 (F. Zahoor, J. Carroll, DF.)

Oilseed Rape (part 'Grain levy' funded)
- Crop Establishment Systems
 - Conventional vs Min Till vs Subsoiler incl Row spacing etc.
 - Interaction with management, N requirement.
- Disease control
 (DF, JS, LG, GL, PhDs)
Teagasc: Break Crop Research

► Break Crop Agronomy (part Grain levy funded)
 ▶ Bean Agronomy (populations, disease etc)
 ▶ Expand beans from end 2015 (PhDs)
 (Establishment, Physiology of yield limitations.)
 ▶ Sugar Beet varieties
 (J. Carroll, JS, DF)

► Oats
 ▶ New Programme 2015: Yield, Quality, Lodging, Mycotoxins
 (J. Finnan)
Bean Trial Harvest Yesterday!

4.0 - 7.7 t/ha
Are Break Crops beneficial?

- Not that much relevant research!
- International review
- Systems / Rotation Trial in Knockbeg
YIELD Increase

- **North America:**
 - Legumes/Oilseeds: +16% (-50% to +60%)

- **Australia**
 - Legumes/Oilseeds: +33% (-25% to +187%)

- **Europe**
 - Legumes/Oilseeds: +24% (-27% to +224%)
WW yield after break

<table>
<thead>
<tr>
<th>Region</th>
<th>★</th>
<th>YIELD Increase</th>
<th>Base Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td></td>
<td>16% (-50% to +60%)</td>
<td>2.4 t/ha</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>33% (-25% to +187%)</td>
<td>2.6 t/ha</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td>24% (-27% to +224%)</td>
<td>4.8 t/ha</td>
</tr>
</tbody>
</table>
WW yield after break

<table>
<thead>
<tr>
<th>Location</th>
<th>Category</th>
<th>YIELD Increase</th>
<th>Base Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America:</td>
<td>Legumes/Oilseeds</td>
<td>+16% (-50% to +60%)</td>
<td>2.4t/ha</td>
</tr>
<tr>
<td>Australia</td>
<td>Legumes/Oilseeds</td>
<td>+33% (-25% to +187%)</td>
<td>2.6t/ha</td>
</tr>
<tr>
<td>Europe</td>
<td>Legumes/Oilseeds</td>
<td>+24% (-27% to +224%)</td>
<td>4.8t/ha</td>
</tr>
<tr>
<td>Europe (Higher yield)</td>
<td>Legumes</td>
<td>+4.1% (-27% to +28%)</td>
<td>7.3t/ha</td>
</tr>
<tr>
<td></td>
<td>OSR</td>
<td>+10% (0 to +39%)</td>
<td>7.5t/ha</td>
</tr>
<tr>
<td></td>
<td>Oats (1 study)</td>
<td>+38%</td>
<td>7.1t/ha</td>
</tr>
</tbody>
</table>
Knockbeg Systems Trial

• 1996 - 2011.
• Rotations and input levels
• Free draining loam (22% clay)
Rotations and Monoculture

<table>
<thead>
<tr>
<th>Break Crop (BC)</th>
<th>Cereal Rotation (CR)</th>
<th>Mono</th>
<th>Mono</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 W. Wheat</td>
<td>W. Wheat</td>
<td>W. Wheat</td>
<td>S. Barley</td>
</tr>
<tr>
<td>2 S. Barley</td>
<td>W. Barley</td>
<td>S. Barley</td>
<td>S. Barley</td>
</tr>
<tr>
<td>3 S. Oats</td>
<td>W. Oats</td>
<td>W. Oats</td>
<td>W. Oats</td>
</tr>
<tr>
<td>4 W. Barley</td>
<td>W. Barley</td>
<td>W. Barley</td>
<td>W. Barley</td>
</tr>
<tr>
<td>5 Beans</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Systems Trial: Inputs

- **High:**
 - Commercial rates

- **Low:**
 - 80% Nitrogen rates
 - 50% Fungicides / Herbicides
Crops and measurements

- Comparing cereal crops grown in rotations
 - W. Wheat, W. Barley, S. Barley

- 7 years data: 2004 – 2010 inclusive

- Grain Yield (t/ha at 15% m.c.)

- Net Profit Margin
 - Standard costs (Inputs and machinery) 2011 prices
 - Individual Crop margins
 - Complete Rotation margins
Results: Yields and Margins
Wheat after Break (t/ha): all years

Break
+11% Yield
+ 1.1 t/ha
Wheat Margin (€/ha): all years

Margin (€/ha)

High
Low
All

Break
+36% Margin

After Break
Continuous
Sp. Barley Yield and Margin

BC: +3% Yield

Yield (t/ha)

Margin (€/ha)
Results: Complete Rotations
• All Years
Entire Rotations and Margin (€/ha)
Rotation crop element margins (€/ha)

- Wheat
- S. Barley
- S OSR
- W. Barley
- Beans
- W.Oats

- Break Rot
- Cereal Rot
- Cont WW
- Cont SB
Yield Variability

- **W. Wheat Low Input:** -10% to + 8%
 - **High Input:** -11% to + 16%

- **Spring OSR:** -10% to + 40%

- **Beans:** -34% to + 28%
Performance varies; particularly break crops.

Break crop benefits the following crop:
 W.Wheat and W.Barley

Rotation interacts with input levels
 - some scope to save costs.

Entire rotations must be considered:
 ➢ Individual crop performance important
 ➢ Suitability to site important
Practical considerations

- Performance from all rotation components vital
- Agronomy of 'break' crops must be optimised
- Build profitable rotations
 - Know: **Yield, Costs, Profits** for each crop on your soils
 - Know **short term** and **long term** rotation benefits
 - Due regard to market for break crops
 - Make decision based on Profit and long term benefits

E.g. for Knockbeg:
Conclusions

- Must balance agronomic requirements with profitability.
- Choose component crops wisely
- Research needed on Break crops
- Market needed for Break crops
Conclusions

- Must balance agronomic requirements with profitability.
- Choose component crops wisely
- Research needed on Break crops
- Market needed for Break crops