Assessing the impacts of climate change on phosphorus transfers in a headwater agricultural catchment

Mary Ockenden, Lancaster University, UK

with Michael Hollaway, Keith Beven, Adrian Collins, Bob Evans, Pete Falloon, Kevin Hiscock, Ron Kahana, Kit Macleod, Kirsty Ross, Martha Villamizar Velez, Catherine Wearing, Paul Withers, Jian Zhou, EdenDTC team and Phil Haygarth
Justification

• More than 70% of UK surface waters still fail to achieve WFD ‘good’ status
• Nutrient pollution from agriculture is one of the main contributors in rural catchments

And in the future:
UK Climate Projections for most of the UK suggest:
• Warmer wetter winters, hotter drier summers
• More intense events (more intense rainfall, longer droughts...)

Objectives

• To use high temporal resolution data to investigate present day phosphorus dynamics
• To use a nutrient transfer model to estimate phosphorus loads in the future, including uncertainty/inter-annual variability
Study catchments

• 2 sub-catchments of River Eden
 – Newby Beck (12.5 km²)
 90% grassland, BFI 0.39
 – Pow Beck (10.5 km²)
 58% grassland, BFI 0.38

• Data collected by Eden Demonstration Test Catchment Project

• Rainfall, discharge, turbidity (15 min resolution)

• Total P, Total reactive P (Bank-side analysis at 30 min resolution)
Analysis

Present day dynamics
• Event classification with method of Haygarth et al., 2004 (HESS, 8, 88-97)

Present day and future phosphorus loads
• Modelling with Soil and Water Assessment Tool (SWAT) (process-based, semi-distributed model)
 o Calibration with observed data
 o Run with time series of weather variables from UKCP09 Weather Generator (present day and future)
Time series data from Pow outlet
Results: Event classification

Pow Beck outlet (April 2012 – March 2013)

<table>
<thead>
<tr>
<th>Total</th>
<th>$Q_{05} = 0.72, C_{p05} = 0.55$</th>
<th>56 events</th>
<th>75% of TP load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>$Q \geq 0.72, C_{p} < 0.55$</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>Type 2</td>
<td>$Q \geq 0.72, C_{p} \geq 0.55$</td>
<td>26</td>
<td>69%</td>
</tr>
<tr>
<td>Type 3</td>
<td>$Q < 0.72, C_{p} \geq 0.55$</td>
<td>26</td>
<td>2%</td>
</tr>
</tbody>
</table>

Newby Beck outlet (Sept 2011 – Jan 2013)

<table>
<thead>
<tr>
<th>Total</th>
<th>$Q_{05} = 0.82, C_{p05} = 0.22$</th>
<th>72 events</th>
<th>78% of TP load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>$Q \geq 0.82, C_{p} < 0.22$</td>
<td>9</td>
<td>1%</td>
</tr>
<tr>
<td>Type 2</td>
<td>$Q \geq 0.82, C_{p} \geq 0.22$</td>
<td>49</td>
<td>76%</td>
</tr>
<tr>
<td>Type 3</td>
<td>$Q < 0.82, C_{p} \geq 0.22$</td>
<td>14</td>
<td>1%</td>
</tr>
</tbody>
</table>

The bulk of the load is transported in Type 2 (high discharge, high concentration) events.
Non-linearity between the peak discharge and peak TP concentration,
but better agreement between event rainfall total and event TP load.
Rainfall following dry periods can result in high P concentrations in spite of little runoff.
Predicted rainfall from UK Climate Projections (UKCP09): 2050s medium emissions

Mean rainfall (and standard deviation) in mm

Pow Beck

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>2050s</th>
<th>% change in mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual rainfall</td>
<td>831 (96)</td>
<td>850 (110)</td>
<td>+ 2%</td>
</tr>
<tr>
<td>Winter rainfall DJF</td>
<td>217 (50)</td>
<td>250 (63)</td>
<td>+ 15%</td>
</tr>
<tr>
<td>Summer rainfall JJA</td>
<td>203 (45)</td>
<td>171 (51)</td>
<td>- 16%</td>
</tr>
</tbody>
</table>

Newby Beck

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>2050s</th>
<th>% change in mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual rainfall</td>
<td>1056 (134)</td>
<td>1083 (158)</td>
<td>+ 3%</td>
</tr>
<tr>
<td>Winter rainfall DJF</td>
<td>334 (83)</td>
<td>372 (101)</td>
<td>+ 11%</td>
</tr>
<tr>
<td>Summer rainfall JJA</td>
<td>202 (46)</td>
<td>170 (53)</td>
<td>- 16%</td>
</tr>
</tbody>
</table>
Results: SWAT model calibration for daily TP load at Newby Beck

Calibration for 2011-2012 and 2012-2013 hydrological years

Nash Sutcliffe efficiency = 0.5
SWAT model results, monthly TP loads
baseline and 2050s medium emissions

Median annual TP load increased by approx. +16%, but more in winter months
Large inter-annual variability indicated by 5th and 95th percentiles

Median annual TP load
2050s 1810 kg
Baseline 1560 kg
For comparison, observed loads:
1730 kg in 2012
1640 kg in 2013

Month
Monthly TP load (kg)
baseline median
5th and 95th percentiles
2050s median
5th and 95th percentiles
Conclusions

• More than 70% of the total phosphorus load from both catchments was transferred in 5% of the time, mostly during Type 2 events \((Q > Q_{05}, C_P > C_{P05})\). These events may become more frequent in future and could stress stream ecology by frequent scouring

• There was good correlation between event rainfall total (mm) and event total phosphorus load (kg), with some outliers explained by high stream concentrations following dry periods

• SWAT model indicated that median annual TP at Newby Beck outlet may increase by approximately 16%, with most of the change during winter months
Thank you

This work was carried out as part of NUTCAT 2050, a collaborative research project funded by NERC under the Changing Water Cycles Programme, project NE/K002392/1. We acknowledge the Eden Demonstration Test Catchment team for provision of data and support.

For further information, please visit our website: http://nutcat2050.org.uk/