Optimising soil fertility leads to efficient fertilizer use

Tim S. Sheil1 Stan T.J. Lalor2 and David. P. Wall3

1Alltech Bioscience Centre, Dunboyne, Co Meath
2Grassland Agro, Dock Road, Limerick
3Teagasc, Johnstown Castle, Wexford

Catchment Science 2015
Presentation outline

Background

Laboratory incubation study

Long term P experiment

Multisite field experiment

Soil P and lime interaction

Seasonal and annual effects of P

N, P and lime interaction

Catchment Science 2015
Perennial problem

Food harvest 2020
Production - High Yield & High Quality

Catchment Science 2015
Phosphorus use stats (Ireland)

Phosphorus fertilizer usage in Ireland (tonnes P)

<table>
<thead>
<tr>
<th>Year</th>
<th>P fertilizer Input</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>60000</td>
<td>200</td>
</tr>
<tr>
<td>1992</td>
<td>50000</td>
<td>300</td>
</tr>
<tr>
<td>1996</td>
<td>40000</td>
<td>400</td>
</tr>
<tr>
<td>2000</td>
<td>30000</td>
<td>500</td>
</tr>
<tr>
<td>2004</td>
<td>20000</td>
<td>600</td>
</tr>
<tr>
<td>2008</td>
<td>10000</td>
<td>700</td>
</tr>
</tbody>
</table>

Catchment Science 2015
Soil test P trends
2013 Data

Good Overall Fertility - Tillage:
Soil pH > 6.5; Soil P and K Index 3 or 4

- Optimum: 14%
- 86%

Catchment Science 2015
Laboratory incubation study

Objective – How do soils differ in the response to addition of P and lime

16 soils chosen with contrasting soil texture, soil P levels (Morgan’s) and soil pH

Soils incubated in pots
- Bulk density
- Constant moisture content
- Temperature
- Constant humidity

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No Lime</th>
<th>+ Lime (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No P</td>
<td>0/0</td>
<td>0/5</td>
</tr>
<tr>
<td>+ P (kg/ha)</td>
<td>100/0</td>
<td>100/5</td>
</tr>
</tbody>
</table>

Catchment Science 2015
1. Only 4 - 31 % of fertilizer P is recovered in the STP
2. Lime also increased the STP
3. Additive benefits of P and lime
Influence of Aluminium

Catchment Science 2015
Presentation outline

- Background
- Laboratory incubation study
- Long term P experiment
- Soil P and lime interaction
- Seasonal and annual effects of P

Catchment Science 2015
Objective
Examine the effect of P fertilizer on seasonal and annual grass production and herbage P concentration

Experimental design
JC dairy farm in 1995
clay loam (site 1)
sandy loam (site 2)

Phosphorus (16% TSP) 0, 15, 30, 45 kg ha yr\(^{-1}\)

Harvest
Between 6 and 8 harvests a year - DM yield and P concentration in herbage
Long term P experiment results (17 years)

DM Yield

14% increase in the herbage yield

Catchment Science 2015
Long term P experiment (effect of harvest)

Catchment Science 2015
Long term P experiment results (17 years)

Herbage P concentration

Catchment Science 2015
Presentation outline

- Background
- Laboratory incubation study
- Long term P experiment
- Multisite field experiment
- Soil P and lime interaction
- Seasonal and annual effects of P
- N, P and lime interaction
Multisite field trial

Objective – Soil fertility effect on grass production (N, P, Soil pH)

2 sites
Johnstown, Wexford (JC)
Moorepark, Cork (MP)

Treatments
4x3x2 Factorial design = 24 plots (4 reps)

Phosphorus - 0, 20, 40, 60 kg ha yr\(^{-1}\)
Nitrogen - 0, 150, 300 kg ha yr\(^{-1}\)
Lime - 0, 5 t ha (applied in year 1)

2011 - 4 harvests (Jun -Nov)
2012 - 8 harvests (full year)
Multisite field trial results

Cumulative herbage yield - Site 1

Phosphorus
5.5% increase in the herbage yield
(1214 kg DM ha\(^{-1}\))

Lime
3% increase in herbage yield
(568 kg DM ha\(^{-1}\))
Multisite field trial results

Phosphorus:
5.7% increase in the herbage yield
(1244 kg DM ha\(^{-1}\))

Lime:
2% decrease in herbage yield
(-526 kg DM ha\(^{-1}\))
When was response to P most evident

Harvest	Site 1				Site 2		
---------	--------	----------		----------	--------	----------	
	N	P	Lime	N	P	Lime	
1.1	<.0001	**0.0004**	0.3966	0.0082	**0.0246**	0.0784	
1.2	<.0001	0.7721	0.7115	<.0001	0.7608	0.3612	
1.3	<.0001	0.1758	0.6265	<.0001	0.1008	0.5712	
1.4	<.0001	0.1981	**0.0242**	<.0001	0.567	0.7082	
2.1	**0.0135**	0.1256	0.726	0.0049	0.6002	**0.0073**	
2.2	<.0001	**0.0267**	0.0482	<.0001	0.2007	0.1123	
2.3	<.0001	0.8826	**0.0019**	<.0001	0.1446	0.2089	
2.4	<.0001	0.0804	0.3059	<.0001	**0.0362**	0.113	
2.5	<.0001	0.0704	0.0849	<.0001	0.0911	**0.0274**	
2.6	<.0001	0.5746	0.1509	<.0001	0.4395	0.0774	
2.7	<.0001	0.1885	0.1706	<.0001	0.117	0.2928	
2.8	<.0001	0.7386	**0.0211**	<.0001	0.1016	0.1408	
Herbage P Interactions

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Site 1</th>
<th>Site 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N*P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_0</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>N_{150}</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>N_{300}</td>
<td>0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>Lime*P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_0</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>L_5</td>
<td>0.33</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Not significant
Summary

- **Laboratory incubation**
 - Lime will reduce P requirement

- **Long term P experiment**
 - 15% yield increase + mid season drop

- **Multisite field experiment**
 - P for early growth and maintain herbage P content
Perennial Problem – Sustainability

1. P fertilizer and lime go hand in hand for maximising grass production

2. Addressing soil fertility and placing N and P fertilizer where it is needed most will reduce environmental impact

3. Nutrient management planning – essential
Research to Advice

The work of this project is contributing to development of Teagasc Soil Fertility Management Advice & Knowledge Transfer initiatives

Acknowledgments

Supervisors
Technicians
Farmers
Students