Equine Reproduction
A Guide for Farmers and Small Breeders
Table of Contents

1. Introduction ... 4
2. Bloodstock selection ... 5
3. Estimated breeding values ... 8
4. Reading a pedigree .. 10
5. The reproductive anatomy of the mare 12
6. The reproductive cycle of the mare 14
7. Manipulating the mare's reproductive cycle 17
8. Pre-breeding management of mares 19
9. Gestation period ... 21
10. Record keeping ... 22
11. Teasing ... 24
12. Timing of breeding .. 26
13. Artificial insemination ... 30
14. Post-breeding management of the mare 34
15. Infertility in the mare ... 36
16. Disease prevention .. 39
17. Breeder skill requirements .. 42
18. Costings ... 43
19. Registration of progeny ... 45
20. Appendix .. 46
There's a consistent demand for quality horses.

The market shows a proven and consistent demand for quality athletic horses, and breeders should streamline their operations to meet market demands, whether that is for show jumpers, eventers or high-end leisure horses. Shrewd choice of breeding stock and better management techniques will improve the quality and consistency of foals and youngstock, and subsequently improve profit margins. This brochure outlines the basics of breeding, specifically for small and medium-sized breeding operations. Further and more specific information is available from the Teagasc equine specialists.
1. **Bloodstock Selection**

Decide on your breeding goal.

Breeding goal

Every breeding programme begins with a breeding goal. You need to decide what type of horse you want to produce. The national breeding goal for the Irish sport horse is:

“To produce a performance horse that is sound, athletic with good paces and suitable temperament and capable of winning at the highest international level in FEI disciplines”.

As a breeder you must decide where you operate within this broad definition. Do you want to breed a show jumper, an eventer, or a dressage animal and, within these disciplines, at what level of the sport concerned? Or do you have some other market outlet in mind? Having decided on your breeding goal, the next step is to identify and match mares and stallions that are most likely to help you to achieve this goal.

There is a market for horses destined for international equestrian sport and competition, but also for leisure horses and horses for amateur riders. In both cases, the demand is for an athletic, sound and good-looking horse with good movement and temperament.
Market knowledge

As a breeder it is imperative that you keep up to date with what is happening in the sport/marketplace so that you can make more informed decisions in your breeding enterprise. The diagrams show that the market gets smaller the more advanced competition is. The higher up the pyramid your horse is able to compete, the more lucrative the market.

It is important to understand the demands of clients within the various levels of the market, and to ensure that breeding stock have the necessary attributes to fulfil these demands.

Selection of breeding stock

Choosing and matching dams and sires is directly related to your breeding goal. If your aim is to produce a quality show horse, selection is based on conformation and movement, together with show success on both the mare and stallion sides. If your outlook is to produce a competition horse, then proven performance of the dam and sire, along with an assessment of performance results of other offspring and relatives of both sire and dam, are critical. If your desire is to produce a pleasure horse, the characteristics of primary interest are temperament, hardiness and good looks.

Reproductive soundness is important regardless of what market you intend to breed for. This is the ability to produce a healthy offspring with minimal financial cost and danger to the mare. Likewise, soundness of wind and limb is important.

Temperament impacts on ease of management, training and riding. The professional rider
will cope with temperament ‘issues’ better than the amateur and leisure rider. However, even in the professional world, ease of riding impacts on performance, regardless of ability.

Criteria for selection of a broodmare
The broodmare must be sound of wind and limb, with good conformation and athletic movement. She must have a good temperament and pedigree, i.e., be well related to other animals that demonstrate the performance attributes you seek to reproduce. The mare must demonstrate an ability to perform in the sport you have chosen to breed for. For example, if the goal is to produce international jumpers the mare must demonstrate excellent technique and scope over fences coupled with a good canter. If finance to test the mare in competition is unavailable, do you have the skills to assess her yourself or is advice required? Consider bringing your mare out to studbook inspection to get an independent evaluation of her strengths and weaknesses, which will assist in making future breeding decisions. The mare must be fertile; otherwise it is a very costly initiative. It is very important to have a breeding soundness examination conducted by a vet prior to the purchase of a potential broodmare.

Criteria for selection of a stallion
The breeder must get as much information as possible before selecting a stallion. Stallions are selected for temperament, conformation, movement, veterinary soundness, performance, pedigree and progeny. The stallion must have good fertility to enhance the mare’s chances of going in foal. The mare’s shortcomings should be balanced with the stallion’s strong points. Pedigree, performance records and genetic indices should be checked. Information on a stallion’s breeding value is compiled and presented in different formats so breeders must understand it and use it to maximise their investment.

Stallions standing abroad
Where stallions from abroad are being used (imported semen), it is essential that the breeder becomes familiar with the approval system in the relevant studbook and researches as much information as possible about the stallion in question.
2. Estimated breeding values

Estimated breeding values (EBVs) are predictions of the genetic advantage that a stallion or mare will pass on to its offspring for a particular trait. The KWPN in Holland and other European studbooks are using genetic evaluations for stallions and mares very successfully. Horse Sport Ireland has compiled EBVs for jumping, conformation, movement, temperament and athleticism. In simple terms, a stallion with a high EBV in the region of 140 is more likely to breed jumpers than other stallions. EBVs estimate how much that improvement can be expected to be in the offspring.

EBVs are expressed as an index, with an average value of 100. The higher the EBV figure, the better. A horse with an EBV of 140 for jumping will have a better chance of breeding jumpers than one with a value of 120. On the other hand, stallions with values below 100 are unlikely to improve that aspect in their offspring. The more information that is included in the EBV, the more reliable the results will be. The accuracy can range from 0 to 1. EBVs with an accuracy of 0.7 or greater have a good level of reliability.

EBVs are not the absolute answer to breeding, but they are a good indication. As more results are included they will become more reliable. EBVs are yet to be developed for the sport of eventing.
Stallion viewing
Upon completion of a list of suitable stallions, arrange a viewing, and if possible also a viewing of some of the progeny, before deciding on the stallion best suited to your individual mare. Do not make a decision based on marketing material alone. Where stallions standing abroad are being used, get access to video footage of the stallion in competition and, if old enough, any offspring in competition; this will allow a more complete evaluation when combined with information on own and progeny performance. If possible, go and visit the farm and view both the stallion and offspring before making your decision. As a breeder you should also become acquainted with the sport you are producing for. Go to the competition arenas to view both stallions and their offspring. There is now an abundance of video footage available online at the touch of a button.

Breeding contracts and payment
A written contract should be agreed and signed between the mare owner and stallion owner prior to mating or semen purchase. The agreed covering fee/semen cost should be outlined, and the terms and conditions gone through in full, particularly where semen purchase is concerned. Where a mare is being sent to stud for mating, be clear on any additional costs that are likely to occur (veterinary bills, boarding fee, etc.) and these should also be outlined in the contract. Payment dates and associated conditions should also be identified in the contract. The contract may detail what should happen in terms of payment, return of fees, or free return in the situation where a mare does not conceive.
Mare owners are encouraged to secure a full breakdown of the items that make up the total invoice from the stud farm.
A pedigree shows the horse’s ancestry. It is often illustrated in a grid-like format. The horse’s sire and dam are the first generation, the grandsire and granddam are the second generation, and so on.

<table>
<thead>
<tr>
<th>First generation</th>
<th>Second generation</th>
<th>Third generation</th>
<th>Fourth generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sire</td>
<td>Paternal grandsire</td>
<td>Great grandsire</td>
<td>Great great GS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great great GD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great granddam</td>
<td>Great great GS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great great GD</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>Paternal granddam</td>
<td>Great grandsire</td>
<td>Great great GS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great great GD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great granddam</td>
<td>Great great GS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Great great GD</td>
<td></td>
</tr>
</tbody>
</table>

A pedigree is a very useful selection tool.
A pedigree is a very useful selection tool. Researching a pedigree can tell you a lot. It is like a history book of the horse’s genetic past, and the past can be used to help plan the future. The pedigree can help to determine: the type of performance the horse is best suited to; how its ancestors have performed; the type of crosses used to produce the horse; and, how the next generation might be bred. However, if the horse’s performance record, conformation and disposition are not known, the value of the animal’s pedigree is limited. The more information that is available about the weaknesses and strengths of the horses in the pedigree, then the better job can be done in planning the next generation. This accumulation of information relies on the owner, breeder or buyer talking to people that have been associated with specific bloodlines to learn the weaknesses and strengths of those lines. Pedigree is more than just a family tree: it is a book of information that can be used as a management tool to help improve the next generation of horses.

<table>
<thead>
<tr>
<th>Percentage of influence of individuals in a pedigree by generation position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st generation</td>
</tr>
<tr>
<td>50%</td>
</tr>
<tr>
<td>6th generation</td>
</tr>
<tr>
<td>1.56%</td>
</tr>
</tbody>
</table>
4. REPRODUCTIVE ANATOMY OF THE MARE

The mare’s breeding organs include two ovaries, fallopian tubes, the uterus (womb), the cervix and the vagina (Figure 1). There is a complicated relationship between the various parts and the glands that control the release of hormones. The hormones play a crucial role in controlling the mare’s reproductive cycle.

The mare’s reproductive system has three important seals that help to protect it. These are the vulva, the entrance to the vagina and the cervix (the entrance to the uterus). A mare with good perineal conformation has a vulva that is upright and vertical with the anus (Figure 2). In mares with poor perineal conformation the vulva slopes forward above the floor of the pelvis. In some mares the lips of the vulva do not form a tight seal. These conformation faults predispose the mare to sucking air and faecal material into her vagina (‘pneumovagina’). Pneumovagina allows harmful microorganisms to enter the reproductive tract and therefore there is the potential for infection and inflammation to develop.

A procedure known as Caslicks can be performed to help mares with poor perineal conformation. The edges of the vulva lips are cut and then sewn together. The sewn
portion of the lips heal together to form a protective barrier that prevents ‘pneumovagina’ occurring. The mare is still able to urinate freely and discharge can still drain through the lips.

The mare may have to have the lips opened and re-stitched to permit breeding. In all cases the stitches must be opened approximately two weeks before foaling (when the mare’s udder has bagged up and foaling is close). Consult your vet for advice.
5. **The Reproductive Cycle of the Mare**

The mare has a reproductive season and a non-reproductive season, both of which are controlled by light. The non-reproductive season, known as anoestrus, occurs in the autumn and winter when there is little natural light. The reproductive season begins in the spring when daylight hours are increasing, and continues through the summer. Mares therefore cycle naturally from March/April through to September/October. The peak of the breeding season is in May, June and July.

Two other periods are known as the spring and autumn transitional stages. One occurs just before the mare becomes reproductively active in the spring and the other occurs just before anoestrus in the winter. During these periods mares are generally erratic in their cycles and sexual behaviour. The spring transition period coincides with increased daylight hours, increased grass growth and ambient temperatures. As the season progresses cycles become regular.

Puberty in the filly occurs on average at one and a half years of age. Spring born fillies show heat as yearlings and those born later in the year generally do not cycle until they are two years old.

The mare’s breeding cycle is on average 21 days, but can vary greatly between individual
Knowledge of the reproductive cycle of a mare is critical to successful breeding of competitive sport horses.

Mares. For a period of around five to seven days within the 21-day cycle the mare is ‘in oestrus’, ‘in heat’, ‘in season’, ‘horsing’, or ‘receptive’ to the stallion. For the other 14 to 16 days the mare is ‘in dioestrus’, ‘out of season’ or ‘not receptive’ to the stallion.
The behaviour of mares in season can include squatting, ‘winking’ of the vulva, and frequent urination.

Mares also tend to become restless during oestrus. In the absence of stallions a mare might tease to a gelding, or another mare. Maiden mares and mares with foals at foot may fail to show oestrus behaviour.

In early oestrus the mare may only show lukewarm signs of being in season. The intensity of the signs usually increase so that the mare is very receptive within one to three days of her ovulation. The mare can remain receptive to being bred for 24 to 48 hours after ovulation (when the egg is released from its follicle), and most mares are receptive during the 24 hours surrounding ovulation. Changes in intensity can be subtle and it is important to pay attention to behaviour, although it is difficult to determine by behaviour alone when a mare will ovulate. Ovulation can be assumed to have occurred 24-48 hours before the mare begins ‘teasing off’. Veterinary use of ultrasound scanners makes it possible to monitor follicle growth and predict timing of ovulation.

When the mare is not in season she will usually refuse to stand still, will swish her tail, pin her ears back, and possibly squeal and kick at the stallion. Mares remain unreceptive until their next oestrus period. It will usually be 14 to 18 days after an ovulation before a mare begins showing signs of heat again if she has not conceived.
6. Manipulating the Mare’s Reproductive Cycle

You might wish to manipulate the mare’s cycle for either of two reasons:

- to produce foals early in the year (producing sport horse foals early in the year for the purpose of having strong foals to show or sell adds considerably to labour and input costs); or,
- where the mare has difficulty cycling naturally.

It is possible to manipulate the mare’s reproductive cycle in a number of ways:

A: Hormonally. Hormonal manipulation is best undertaken with veterinary advice.

B: Placing a mare under artificial lights can trick her system into cycling earlier in the season than under natural conditions. Mares exposed daily to a light period of 16 hours (including natural daylight hours) will experience their first ovulation 60-90 days after

Pregnant mares need turnout.
the light programme begins. A 100- to 150-Watt bulb is usually sufficient. There should be no shadows or dark areas in the stable and the programme must be continuous. Any lapse may send the mare back into anoestrus.

To have a mare cycling and ready to begin breeding between mid February and the beginning of March, for example, she must be placed under the daily extended light period somewhere between mid November and the beginning of December.

C: Increased diet and ambient temperature can also assist in preparing the mare for early breeding. Fresh air and freedom to exercise help to keep horses healthy, but if the goal is to trick the mare into believing it is spring, then it is probably best that she not be turned out in very wintry conditions. In these circumstances, alternative forms of exercise must be offered – lungeing or the horse walker, for example.

Putting a rug on the mare is also worthy of consideration, particularly for maiden and barren mares. It is not wise to rug pregnant mares in case they should foal without supervision, as the foal may get tangled up in the rug straps and potentially suffocate. Rugs will also hinder suckling.
7. Pre-breeding management of mares

The first step in raising a healthy foal is to have a healthy mare. If the mare is not in good health her reproductive system is unlikely to perform optimally.

Age should be considered. Some 2-3% of younger mares are problem breeders, while 20-25% of older mares (13 years +) are problem breeders. In general, a mare’s fertility decreases after she is 12 to 13 years of age.

When considering breeding a young mare, it is advisable to choose one that is physically mature enough to handle the demands of pregnancy and lactation without compromising her own or her potential foal’s well-being. The young mare must be fed appropriately to meet both her growth and pregnancy needs.

The mare’s body condition should be evaluated to ensure that she is neither too thin nor overweight when it is time to breed her. A mare should carry enough flesh to cover her ribs and have a relatively flat topline when viewed from the rear. Excessive fat – seen as deposits of fat around the tail-head, a cresty neck and having difficulty feeling the ribs with moderate fingertip pressure – should be avoided if possible.

Before breeding, your mare should be up to date on essential influenza and tetanus.
vaccinations. Vaccinating the mare four to six weeks prior to foaling for both influenza and tetanus will provide the foal with antibodies through the colostrum, which will offer protection for the first six months of life. The antibody protection level can be measured simply where there is any concern. Discuss this with your vet.

Mares must be on an effective deworming schedule. The goal of an effective programme should never be to eradicate any given parasite completely but rather to minimise the risk of disease, control egg shedding, maintain effective anthelmintic (chemical wormer) control, and avoid development of anthelmintic resistance as much as possible. Faecal egg count tests assist in monitoring the effectiveness of the parasite control programme and permit the treatment only of horses with high worm burdens. This form of treatment should only be in place for horses over three years of age, and should still include targeted treatment of encysted small redworm in the autumn and against tapeworm every six months, at the end of the housing season and the end of the grazing season. It is extremely important to read the product instructions with regard to suitability for use in pregnant and lactating mares, and the effectiveness of the product against the various parasites. Parasite control is complex and should be discussed with your vet. Good grassland management, stable hygiene, not overstocking, dosing by weight and treating new arrivals before turnout with existing stock all have a role in an effective parasite control programme.

Any dental problems should be corrected and annual floating (smoothing or contouring the teeth with a file called a ‘float’) completed so that the mare can make the most of her diet and not have to undergo stressful dental procedures during late pregnancy.

Routine foot trimming should also be up to date. A mare’s feet must be trimmed regularly (every six to eight weeks). Mares with broken or cracked feet, long toes, flat soles and weak heels can become lame and often may be difficult to get in foal. Most mares can be kept without shoes but those with bad feet may require shoes in front. Never put on shoes behind in case she harms her own foal, or other mares or foals. Pick out her feet regularly as this is an opportunity to assess her foot condition and also prevents stone bruises. The mare should be able to support the added weight of pregnancy without undue pain or distress. Ideally, the decision about whether to breed a performance mare should be made in the autumn before the breeding season. This allows an adjustment period for the mare in coping with being teased and managed for breeding. It also allows for the time and patience required in handling a maiden mare as she learns to adjust to her new role in life.
8. **Gestation period**

The average equine pregnancy lasts for 340 days. Pregnancy length can range from 310 to 370 days. Foals born earlier than 300 days are unlikely to survive. Many owners become concerned if a pregnancy exceeds the expected duration. In general, mares will foal when they are ready and this is not necessarily when they are calculated to be ‘due’. If you are worried about the duration, or any other aspect of your late-pregnant mare, consult with your vet.

The estimated foaling date can be calculated from the following:

\[
\text{Estimated foaling date} = \text{date of the last covering plus one year minus 25 days.}
\]

Example: if a mare was covered on May 1, 2015, she is due to foal on April 5, 2016.
9. RECORD KEEPING

Good records can save a lot of time and improve breeding performance. Detailed and accurate health and reproductive records are extremely important when breeding and foaling mares. The details should include the mare’s vaccinations, deworming schedule, hoof and dental maintenance, medications and any health problems. Specific reproductive records for a given mare should also be maintained season to season in a dedicated diary. Mares tend to repeat breeding and foaling patterns. The records should include the year, the mare’s age, previous relevant reproductive history (for example number of foals, foaling complications, breeding injuries, tendency to pool urine, abortions and their identified cause, and previous uterine biopsy scores if undertaken). The mare’s status at the beginning of the current season (maiden, open, barren or foaling) should also be recorded.

A maiden mare is a non-pregnant mare that has never been bred; an open mare is a non-pregnant mare that has previously produced a foal but was not bred during the previous breeding season; a barren mare is a non-pregnant mare that was bred during the previous breeding season and is not in foal at the end of the breeding season; a foaling mare is a pregnant mare that will foal some time during the upcoming breeding season.

Detailed records of each oestrus cycle are critical for effective management. For example, record the date non-pregnant mares are put under lights and subsequent teasing activity. For foaling mares, record daily pre-foaling changes in her udder and teat development. Record the date of foaling, difficulty of delivery, and any post-foaling complications, as well as the details of her first post-foaling reproductive examinations. A record should also be kept of the time of foaling, the time the foal stands, time of first suckling, and also the time the afterbirth is passed.

For cycling mares, records of the daily events should include how the mare teased and the findings of any veterinarian examinations. Coding can be used to make records easy to follow and quick to enter.
Example

<table>
<thead>
<tr>
<th>Follicles</th>
<th>1R = 1cm follicle on right ovary</th>
<th>2L = 2cm follicle on left ovary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix</td>
<td>CX = cervix closed</td>
<td>3C = cervix open 3cm</td>
</tr>
<tr>
<td>Mating</td>
<td>SI = served by insemination</td>
<td>SN = served naturally</td>
</tr>
<tr>
<td>Scanning</td>
<td>U = scanned in foal</td>
<td>Ux = scanned not in foal</td>
</tr>
<tr>
<td>Others</td>
<td>F = foaled</td>
<td>O = ovulated</td>
</tr>
<tr>
<td>Others</td>
<td>S = stitched</td>
<td></td>
</tr>
</tbody>
</table>

For recording teasing behaviour, a simple one to five scale can be used as follows:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resists the teaser, pins ears back, kicks at the teaser</td>
</tr>
<tr>
<td>2</td>
<td>Indifferent towards the teaser, tolerates his presence</td>
</tr>
<tr>
<td>3</td>
<td>Interested in the teaser, as evident by advancing towards him and lifting the tail</td>
</tr>
<tr>
<td>4</td>
<td>Stands close to the teaser, sometimes in a squatting position, some urination and winking of the vulva lips</td>
</tr>
<tr>
<td>5</td>
<td>Squatting, frequent urination, winking of the vulva, leaning toward the teaser</td>
</tr>
</tbody>
</table>

This is very useful information both for you in the management of your mare and for your vet.
Teasing is an important breeding management tool, which should not be overlooked unless a farm cannot accommodate the maintenance and handling of a teaser male. A teaser can either be a stallion or a gelding that demonstrates good libido. He must be persistent and stimulatory to a mare. He should sniff, nudge and nip at the mare but never be vicious or savage. He should be easy to handle and obedient so that he will back away from a mare when directed to do so.

It is best if the same person observes the daily teasing of the mare so that subtle changes in her behaviour as she progresses through her cycle are more likely to be noticed. Some mares are obvious in their behaviour. They stand, break down, urinate, and wink their vulva the instant they come into contact with the teaser. These mares have to be pulled away when teasing is over. They are also blatantly ‘out’ when they are in dioestrus. Then they pin their ears back, swish their tails, move about at the first nicker of the teaser and begin letting fly with their hind legs.

Some mares are shy and routinely resist a teaser’s advances even when they are approaching ovulation. These mares can break down (show oestrus signs) with a little patience and persistence on the part of handlers and the teaser. The extreme is the mare that strikes out with her front and rear feet, then perhaps stands still for a moment or two.
(close to ovulation time) while the teaser cautiously sniffs her over.

If possible, tease the mare at the same time of day. Give the mare time to show but do not tease for too long at any one time; five minutes is more than sufficient and most will respond much more quickly.

If a mare is suspected of having silent heats, have her examined by a vet. This is where, by your day count after foaling, she should be in season, and perhaps internally she is doing all the right things, but is showing no external signs.

Start teasing mares on day five or six after foaling. Mares in season should be teased daily through their heats so that the intensity of their signs can be monitored and to double check that the mare teases out as expected. Mares thought to be in dioestrus and/or early pregnancy (less than 40 days) should still be teased at least two to three times a week so that short-cycling (early return to oestrus) and mares that lose their pregnancies and unexpectedly return to oestrus are not missed. Pay careful attention during the 16 to 18 days following ovulation to tease mares daily so as not to miss the beginning of the next oestrus period.

Mares that have been diagnosed as not pregnant, and then fail to come back into season, warrant a second ultrasound examination. It is possible that she is pregnant and the embryo was missed at the first scan because it was a little small for its gestational age or because the mare conceived on a second undetected ovulation a couple of days after the first ovulation. Likewise it is sometimes difficult to determine accurately the early pregnancy status of mares that have cysts in the uterus. A pregnancy should grow and a cyst does not; otherwise, they appear similar and there can be a difficulty in differentiating between the two in early pregnancy.

Mares that have been given prostaglandin (PG) to bring them back into heat also need close daily teasing so as not to miss the start of the next oestrus period. Late winter anoestrus and spring transitional mares should also be teased twice weekly to get a handle on their progress.

Some mares (maiden mares, performance mares, mares with very young foals) simply do not display signs of behavioural oestrus even though they are cycling normally. In these instances more intensive observation is required to detect subtle signs such as vulva lengthening, clear and slight mucous vulva discharge, increased restlessness, and vocalisations, all of which might indicate that the mare is in oestrus.
11. Timing of Breeding

Breeding on the foal heat (six to ten days after foaling) should only be considered if the mare has had a normal delivery, passed her placenta (the afterbirth) within three hours of delivery and experienced no other apparent problems. Maiden and barren mares generally have a lower conception rate at the first heat of the season.

Mares are usually receptive to being bred for five to seven days. They normally ovulate during the last 24 to 48 hours of that heat period, but accurately predicting exactly which day a mare will ovulate is impossible with teasing alone.

The traditional natural breeding strategy is to cover a mare every 48 hours during her heat, beginning on the second day of showing oestrus signs. This is continued until she is no longer receptive to the stallion. The average fertile stallion’s semen will last for at least 48 hours in the mare. The main disadvantage with this strategy is an increased risk of the mare developing a uterine infection. Semen is not sterile, and every natural covering introduces contaminants and bacteria, as well as sperm, into the uterus.

A healthy young mare with good perineal conformation is able to clear contamination within 48 hours. This sort of mare is less likely to become infected as a result of breeding.

The following categories of mares have a much more difficult time clearing contamination:
- older mares that are predisposed to pneumovagina through poor perineal conformation;
- mares predisposed to pooling urine in the vagina;
- mares that experience accumulation of uterine fluid; and,
- mares that have a cervix that fails to relax completely during oestrus.

Another strategy is to breed the mare before, and as close to the time of ovulation as possible. This will limit the number of coverings/inseminations necessary, which is important:
- with susceptible mares described above;
- with stallions with large books of mares;
- when the number of artificial insemination (AI) breeding doses is limited; and,
- where frozen semen is used.

When the mare is bred 48 hours or less before her ovulation, she should only need to be bred once during the cycle.
Optimal timing of covering/insemination

<table>
<thead>
<tr>
<th>Type</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural covering/fresh semen</td>
<td>24-48 hours before ovulation</td>
</tr>
<tr>
<td>Chilled semen</td>
<td>12-18 hours before ovulation</td>
</tr>
<tr>
<td>Frozen semen</td>
<td>six hours before to six hours after ovulation</td>
</tr>
</tbody>
</table>

In situations where breeding must be based solely on the mare’s behaviour, one effective strategy, for some farms with exceptionally good and careful teasing management, is to breed mares on the third day of their behavioural oestrus and once more on the fifth day if they continue to tease strongly.

Experienced vets can accurately predict ovulation time. With the aid of the ultrasound scanner it is possible to be much more accurate in the timing of coverings relative to ovulation.

In general, when a dominant follicle reaches a diameter of 3.5-4cm and softens, it is a reasonable guesstimate to say that the mare is within 24 to 48 hours of ovulation. This prediction can be tweaked based on how the follicle looks and feels, how strongly the mare is teasing in, what her uterine and cervical tone feel like, and previous ovulation history. This is where record keeping is important.

Veterinary intervention before breeding would involve:

- swabbing of the clitoris at the start of the breeding season to check for the presence of contagious equine metritis (CEM);
- a blood test to check for the presence of equine viral arteritis (EVA) and equine infectious anaemia (EIA) within 28 days of mating;
- a speculum examination to assess the cervix;
- swabbing the mare’s uterus when she is in season to check if she needs mucolytic or antibiotic treatment and uterine lavage;
- possible opening of a stitched vulva before natural mating;
- scanning to monitor the development of follicles;
- assessing the mare for presence of uterine fluid, urine pooling, inflamed or irritated cervix, and presence of cysts; and,
- possible administration of hormones.
Cost implications:
Consider the following when making your decision about the extent of veterinary involvement in your breeding programme:

- increased veterinary input increases the costs in the form of professional fees, and often products such as hormones, and other treatments;

- **but**, minimal veterinary input and scanning can bring its own hidden costs:
 - covering more often increases the chances of the mare being infected, increasing the possibility of her not conceiving and the subsequent necessity for more intense veterinary treatment, uterine lavage and hormonal injections;
 - less veterinary supervision may mean longer stays at stud or indeed missing ovulations, which proves costly through increased transport costs, and increased boarding fees;
 - low veterinary input means that mares with reproductive problems are not identified quickly, thus wasting your investment;
– AI necessitates greater veterinary monitoring to ensure that there is no wastage of semen; and,

- transport and boarding costs can be eliminated if keeping the mare at home or indeed reduced if using a local vet clinic or stud farm.
12. ARTIFICIAL INSEMINATION

The use of AI has increased. Its advantages are:

- the addition of antibiotics to semen extenders reduces venereal transmission of bacterial diseases, where the stallion serves as a carrier; treated semen also reduces the risk of infection in susceptible animals;
- there is reduced risk of breeding injuries to both the mare and the stallion;
- semen collection with an artificial vagina allows evaluation of semen quality and assists in the early detection of infertility problems in the stallion;
- a reduced need to transport the mare and young foals;
- it removes the necessity for boarding at stud farms (cost factor and exposure to disease); and,
- the best stallion for the mare can be used irrespective of location.

AI is a highly effective, convenient and safe method of horse breeding (AI is not permitted where the progeny are to be registered with the Weatherbys General Studbook).

Dummy used to collect semen from stallions for artificial insemination.
Chilled semen

Semen is collected from the stallion, using a dummy, in an artificial vagina (AV). It is examined under the microscope for quality. Depending on the quality, the semen is extended – diluted – into a number of doses. The extender contains food for the sperm and antibiotics to reduce the risk of disease spread. The extended semen is chilled and packaged ready for transportation to the breeder. Chilled semen gives access to stallions standing abroad, competition stallions and stallions in other parts of the country without the mare having to travel. Chilled semen will remain viable for 48-56 hours if stored correctly. Not all stallions produce semen that will tolerate storage. When processed and handled correctly, chilled semen can achieve pregnancy rates equal to those achieved with natural service.

If using chilled, transported semen, it is important to establish good and timely communication with the agent or stud farm selling the semen. Proper timing of insemination 12-18 hours before ovulation is critical, so accurate prediction of ovulation time is important. The time required for transport of semen and the stage of a mare’s oestrus cycle must be synchronised. The stallion farm should be notified on the first day of oestrus and again requested to transport at least 24 hours in advance of the desired insemination time.

Additional costs include the cost of transport arrangements, shipment container, and veterinary certificate.

Frozen semen

Semen may be frozen and stored indefinitely for future use. Frozen semen allows access to stallions standing abroad, competition stallions, ill or injured stallions, overbooked, or even deceased stallions. Frozen semen can be shipped to the vet or mare owner in advance, thus cutting out the anxiety and logistical headaches associated with chilled semen breeding. Frozen semen is typically transported in a nitrogen vapour container. These containers maintain near liquid nitrogen temperatures (around minus 190°C) for days or weeks without the use of liquid nitrogen. Long-term storage is in liquid nitrogen storage tanks.

Semen for export must be collected and frozen at a facility inspected regularly and certified by the authorities (the Department of Agriculture Food and the Marine in Ireland). The centre must meet the regulations required for processing semen for export (this also applies to chilled semen for export).
Additional costs related to frozen semen include the cost of transport arrangements, nitrogen storage containers and a veterinary certificate. When using frozen semen it is necessary to scan mares every six hours to ensure optimal timing of insemination.

While no specific standards of frozen semen quality exist in the equine industry, there are some generally accepted guidelines. Most commercially distributed semen contains 600 million to one billion sperm per dose. The total sperm per dose varies depending upon the stallion’s initial semen quality and the initial test freeze evaluation. The goal is to provide >300 million progressively motile sperm per dose after thawing.

Purchase of semen
Many different terms and conditions apply when importing semen, either chilled or frozen, and you need to check them out very carefully. Some farms only sell semen per insemination dose, but don’t give a quality guarantee; this is very risky for the mare owner. If your mare
does not conceive you cannot claim any reimbursement of the stud fee or any kind of stud fee credit for the following year. For chilled semen, some farms will credit half of the paid stud fee if a mare does not conceive or re-absorbs. It may be possible to receive a free covering for the following year if the mare does not conceive. Other farms only offer a free-of-charge re-insemination in the following season for mares returning to the same stallion before April 1, for example. In all cases a veterinary certificate must be presented stating that the mare is not in foal by a predetermined date. Some farms give absolutely no guarantee for AI that takes place off their premises. It is important that semen is examined on arrival at your farm by your veterinarian to ensure that appropriate quality standards are met.

Each dose of semen (fresh, chilled or frozen) should be clearly labelled with:
- the name of the stallion;
- the time and date on which the semen was collected;
- the insemination dose per mare;
- the progressive motility of the semen; and,
- the concentration of the (extended) semen.

It is absolutely crucial that you read the small print and are aware of the terms and conditions when purchasing semen.

It is also important to ensure that all relevant health checks were in place and certified for the country in question.
Each and every consignment of semen being imported from within the EU must be accompanied by a completed intra-community trade certificate (INTRA), specifying the name of the stallion whose semen the certificate relates to, and by an original, valid health certificate issued in the country of origin.
Each and every consignment of semen being imported from outside the EU must be accompanied by a completed Common Veterinary Entry Document (CVEDA) and by an original, valid health certificate issued in the country of origin.
It is an option to have a shipment of chilled semen tested if there is any doubt about its status.
13. Post-breeding management of the mare

After a mare has been covered or inseminated, daily teasing should continue and scanning be performed to confirm that she has ovulated and gone out of oestrus. The vet may recommend administration of the hormone LH (luteinising hormone) to ensure ovulation after covering/insemination. Examination of the mare’s reproductive tract by the vet within the first six to 24 hours after breeding also means that any abnormal build-up of uterine fluid will be identified quickly and treated.

Rapid identification and treatment of mares that do not clear contamination, fluid and inflammation after breeding can help to prevent persistent inflammation of the uterus lining (endometritis) and save a pregnancy.

Repeated examination and teasing of the mare after breeding helps to detect double ovulations (which can result in twin pregnancies) when they occur. It is best to follow mares through the first 48 hours after ovulation to ensure that there are no lingering problems. Mares that fail to conceive after covering are expected to begin teasing back 16 to 18 days after ovulation. Ultrasound scanning for pregnancy should begin by day 14/15 after ovulation. Twin pregnancies identified by day 16 after ovulation are easier to manipulate and reduce due to the mobile nature of the embryo in the uterus up to this time. Follow-

Mare being scanned.
up pregnancy examinations are recommended between day 28 and day 30 for detection of a heartbeat, and to monitor continued normal development of the identified embryo and tone of the uterus.
Mares may be monitored again at 40 and 60 days, and then examined for confirmation of pregnancy at the end of September (particularly if the covering fee is paid under October 1 terms and conditions).
With good management and fertile semen, fertilisation rates of 90% in young, fertile mares are achievable. Properly managed mares almost always conceive. Infertility results in huge economic loss to the breeder.

Causes of infertility

The first area to examine in addressing fertility is the general management of the mare’s health. If she is in poor body condition, has any underlying cause of pain, or an infection, this may be enough to prevent her going in foal. Nature has inbuilt protection mechanisms.

In some instances mares that are still in spring transition are being asked to breed and old mares past their reproductive prime are being asked the same question.

The mare cannot become pregnant no matter how well she is managed if fertile semen is not available and if it is not deposited in the uterus at the right time. Likewise, during artificial insemination semen can be mishandled at any point in the process or a stallion’s semen may not transport or freeze well. Also, a normally fertile stallion may
experience a period of infertility due perhaps to heat or injury, or have reduced sperm production due to overuse. For conception to occur viable sperm must be present at the same time as a viable egg. If a mare is bred too early relative to her ovulation there will not be any viable sperm to fertilise the egg. If the mare is bred too late the egg is no longer viable. Even if fertilisation still occurs, embryos resulting from aged eggs frequently do not survive long.

Early embryonic loss
The death of developing embryos prior to 50 days of gestation is common in all equine pregnancies, and makes a significant contribution to reproductive failure in infertile and aged mares. This normal loss in otherwise healthy mares can be viewed as nature’s way of eliminating genetic errors that might have occurred at some point before or at conception.

In subfertile mares, high rates of embryonic loss are caused by both embryo and mare factors. Mare factors are generally considered to be age-related changes or pathologic conditions that lead to poor overall uterus and/or oviduct environments. A poor environment is not conducive to normal embryo survival or development.

Poor uterine environment – endometritis
Endometritis is inflammation of the uterus lining. This can interfere with conception, as a build-up of inflammatory products and pathogens within the uterus is detrimental to normal sperm motility and survival. Abnormally persistent post-breeding uterine inflammation (unresolved at approximately 48 hours after ovulation) can harm the embryo when it arrives at the uterus five to six days after ovulation.

Normal, healthy mares experience minor levels of contamination and inflammation after foaling, but this will not persist. It will have cleared by 36 hours post breeding so there are no adverse effects on fertility. These mares have uterine defence mechanisms that function normally and can prevent access to the uterus, or rapidly eliminate irritants such as those associated with the presence of semen in the uterus after breeding.

Susceptible mares have one or multiple breakdowns in their uterine defense mechanisms, allowing easy contamination of the uterus. Once contaminated, they
cannot readily clear inflammatory debris and invading organisms. Contamination that would normally only result in minor inflammation in a healthy mare, can result in persistent inflammation in a susceptible mare. These mares easily develop established inflammation and infections within their uterus. Even when treated, these mares often experience recurrent infections with each new mating.

Uterine defence mechanisms include good perineal conformation, competent anatomical barriers (vulva, vagina and cervix), timely uterine clearance, and action of white blood cells. All of these can be negatively affected by ageing, the number of foals produced, injury and poor body condition.
15. **Disease prevention**

A disease-free status in Ireland must be maintained. There was an outbreak of EIA or swamp fever in Ireland during 2006, which caused disruption to breeding activities and economic loss. EIA, CEM, equine herpes virus (EHV) and EVA are very serious diseases that have the potential to destroy the industry if they became established. There were sub-clinical cases of CEM reported in 2013, 2012, and previously in 1982.

Some diseases are listed as notifiable with the Department of Agriculture, Food and the Marine. To this end, if a mare aborts or you notice anything unusual, you should contact the vet immediately.

It is of critical importance to maintain a disease-free status in Ireland. It should be established prior to breeding that the mare, and stallion/semen, are free from infection.

Breeding-related diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM</td>
<td>Contagious equine metritis</td>
</tr>
<tr>
<td>EVA</td>
<td>Equine viral arteritis</td>
</tr>
<tr>
<td>EHV</td>
<td>Equine herpes virus</td>
</tr>
<tr>
<td>EIA</td>
<td>Equine infectious anaemia</td>
</tr>
</tbody>
</table>

Taking a uterine swab.
Taking a clitoral swab.
The most important means of preventing disease are:

- establishing freedom from infection before starting breeding activities;
- checking that horses remain free from infection during breeding activities; and,
- exercising strict hygiene measures during breeding activities.

Swabs may be taken from the genitalia of the mare for culturing in a laboratory to test for the presence of infective organisms. A clitoral swab can be taken at any point during the reproductive cycle, and for pregnant mares may be taken before or after foaling. A swab is taken from the lining of the uterus through an open cervix when the mare is in season. No horse should be used for breeding activities until or unless all swab results are available and negative.

In the case of EVA and EIA, blood samples can be taken for laboratory testing. These should be taken within 28 days of mating and advice followed on the results.

Vaccination is available for stallions and teasers against EVA, and for mares against EHV. Vaccination of all breeding stock, under veterinary discretion, raises the level of protection and is believed to help in preventing abortion storms in the case of EHV. However, vaccination will not necessarily provide total protection.

It should also be noted that EVA survives in chilled and frozen semen, and is not affected by the antibiotics added, so it is crucial to attain the relevant health certificates in all cases.

Management of breeding stock

Breeding stock should be managed in ways that will minimise the risk of spread of infection between horses:

- pregnant mares should be kept separate from all other stock;
- where possible, mares should foal at home and go to the stallion with a healthy foal at foot or have semen imported onto the farm;
- if foaling at home is not possible, pregnant mares should go to the stallion or boarding stud 28 days before foaling is due. Mares should be isolated in groups with other healthy mares at a similar stage of pregnancy; the groups should be as small as possible;
- mares from sales yards or overseas are a particular risk and should be grouped away from pregnant mares;
isolated groups and individuals should be separated as far as possible from weaned foals, yearlings, horses out of training and competition horses – fillies out of training/competition yards are a particular risk to pregnant mares;

- mares in late pregnancy should not travel with other stock, particularly mares that have aborted recently;

- any foster mare introduced to the premises should be isolated, particularly from pregnant mares, until it has been proved that her own foal’s death was not caused by EHV; and,

- disinfect housing equipment and transport vehicles on a regular basis with appropriate disinfectants that are virucidal, fungicidal and bactericidal.
16. Breeder skill requirements

The management skills a breeder needs depend on the age at which he/she intends to sell the offspring.

If selling as foals (weanlings) the breeder must:
- be able to assess the mare;
- have the knowledge to use all available resource materials to evaluate pedigree and performance information of breeding stock;
- have the ability to choose a complementary stallion for the mare;
- have appropriate land and facilities;
- ensure a high level of health and welfare with a good understanding of the requirements for nutrition, foot care, vaccination and parasite control;
- maintain excellent pasture management procedures;
- handle foals in a calm and confident manner when leading, grooming and loading for transport; this will result in a confident and obedient weanling on the day of sale; and,
- have the ability to assess the true value of a foal or seek unbiased professional advice.

If selling as a three-year-old, the breeder must:
- have all of the above;
- have the skill to manage young horses from weanling stage to three years;
- have extra facilities to allow controlled schooling on the lunge rein and over small fences;
- have the ability to assess the movement and jumping ability, and to assign a true value;
- take on the risks associated with the vetting for sale that are not necessary when selling foals; and,
- have the skills to produce a three-year-old for sale, or be willing to have the horse produced professionally if it is of value to do so.
Asking how much it costs to breed and produce a foal is a bit like asking how long is a piece of string as there are so many variables. Many people are breeding horses with the uncalculated assumption that they might make a profit for the time and money invested. But how many are actually working out how much money is being spent and what the margins are?

The costs below are calculated on the basis of getting an average mare in foal and include all the usual husbandry practices for both mare and foal. Stud fees can range from as low as €200 to €3,500 and more. Costs only assume minimal veterinary treatments and this is an area where costs can dramatically alter. None of the figures below take into account sales entry fees, commission, depreciation of the broodmare, wages paid to the breeder or any outside professional help. These can add significantly to the final tally of how much it costs to breed a mare every year.

Veterinary costs vary significantly.
The mare:

<table>
<thead>
<tr>
<th>Service</th>
<th>Cost (€)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stud fee</td>
<td>?</td>
<td>Can range from €200-3,500</td>
</tr>
<tr>
<td>Keep at stud</td>
<td>150</td>
<td>Three weeks at €50/week</td>
</tr>
<tr>
<td>Farrier</td>
<td>135</td>
<td>Five trims at €15/trim; two pairs of front shoes at €30/pair</td>
</tr>
<tr>
<td>Dosing</td>
<td>64</td>
<td>Two doses at €18/dose; two doses at €14/dose</td>
</tr>
<tr>
<td>Dentist</td>
<td>40</td>
<td>Annual standard treatment</td>
</tr>
<tr>
<td>Feed</td>
<td>275</td>
<td>Pre and post foaling</td>
</tr>
<tr>
<td>Bedding</td>
<td>48</td>
<td>Four round bales @ €12</td>
</tr>
<tr>
<td>Veterinary</td>
<td>200</td>
<td>Including scanning, vaccines</td>
</tr>
<tr>
<td>Grazing</td>
<td>35</td>
<td>Fertiliser, fencing, water supply</td>
</tr>
<tr>
<td>Transport</td>
<td>150</td>
<td>Diesel/petrol to and from stud and vet</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>100</td>
<td>Tack supplements</td>
</tr>
<tr>
<td>Total</td>
<td>1,197</td>
<td></td>
</tr>
</tbody>
</table>

The foal:

<table>
<thead>
<tr>
<th>Service</th>
<th>Cost (€)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrier</td>
<td>45</td>
<td>Three trims at €15/trim</td>
</tr>
<tr>
<td>Dosing</td>
<td>15</td>
<td>One dose at €15/dose; part of tube given per dose</td>
</tr>
<tr>
<td>Feed</td>
<td>47</td>
<td>To weaning</td>
</tr>
<tr>
<td>Bedding</td>
<td>12</td>
<td>One round bale @ €12</td>
</tr>
<tr>
<td>Veterinary</td>
<td>150</td>
<td>Two visits at €75/visit; tetanus vaccine, markings</td>
</tr>
<tr>
<td>Grazing</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Registration</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>120</td>
<td>Entry fee, tack</td>
</tr>
<tr>
<td>Total</td>
<td>454</td>
<td></td>
</tr>
</tbody>
</table>

To track production costs, the Teagasc Excel-based Equine Cost Control Planner is an excellent tool and is available free of charge to Teagasc clients. It is a user-friendly programme and records all expenditure, both incoming and outgoing. This is essential in the analysis of the financial situation of the breeding enterprise, ensuring that sound financial and breeding decisions are made in the future.

Ask for your copy of the Teagasc Equine Cost Control Planner.
18. REGISTRATION OF PROGENY

By law, all foals must be registered within six months of their birth or before December 31 in the year of their birth, whichever occurs later, in order to be considered for slaughter for human consumption. Registration of all stock with verified pedigree is the bedrock of any breeding programme. While identification documents are sufficient to meet the legal requirements for identification, they do not require horses to have DNA taken or verified, as is the case with studbook passports. The value of young stock in the sport horse sector is strongly linked to its pedigree. An animal registered with unrecorded pedigree is of diminished value. Also, the subsequent performance information is lost to the studbook for genetic evaluation, breed improvement and other purposes. It is also lost for subsequent generations bred from these animals, as the links cannot be maintained without DNA verification of each generation. If the animal turns out to be superior, then the potential added value to the animal’s bloodline is lost. It is imperative for the betterment of the breeding industry as a whole, and for the individual value of the animals concerned, that they be registered with verified pedigree.
APPENDIX

For further information contact any member of the Teagasc Equine Specialist Advisory Service:

Wendy Conlon
Teagasc, Mellows Centre, Athenry, Co. Galway
T: 091 845291 M: 087 9879083 E: wendy.conlon@teagasc.ie

Declan McArdle
Teagasc, Grange, Dunsany, Co. Meath
T: 046 9026718 M: 087 6831876 E: declan.mcardle@teagasc.ie

Acknowledgements

The authors would like to acknowledge the assistance of the following people in proofreading this publication and providing photographs:

Bridget McGing MVB MRCVS
Steffania Bucca MVB MRCVS
Vivienne Duggan MVB MRCVS
Jacqueline Yeomans MVB MRCVS

This brochure is intended as a guideline only and is not a substitute for reproductive consultation with your veterinarian.

Compiled and edited by the Teagasc Equine Specialist Unit
Contact details
Teagasc
Public Relations Department
Head Office
Oak Park
Carlow
Tel: 059 9170200
Email: info@teagasc.ie

www.teagasc.ie