Effects of energy supplementation to lowbirth weight neonatal piglets on their survival, growth and blood glucose level.

O. Schmitt *1,2,3, K. O'Driscoll¹, L. Boyle¹, E.M. Baxter³, P.G. Lawlor¹

¹Pig Development Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland;

²Department of Animal Production, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK;

³Animal Behaviour and Welfare, Animal and Veterinary Science Research Group, SRUC, Edinburgh, UK

The context

- Large litters increased
 - Litter weight variability
 - Prevalence of low birth weight piglets
- Neonatal mortality
 - Low body energy reserves

Energy reserves of the newborn piglet

Source	Type	Available energy
Liver	Glycogen	43 kJ/kg BW
Muscle	Glycogen	209 kJ/kg BW
Body (non-structural body fat)	Lipids	175 kJ/kg BW

Total

427 kJ/kg BW

(Mellor and Cockburn, 1986)

The context

- Large litters increased
 - Litter weight variability
 - Prevalence of low birth weight piglets
- Neonatal mortality
 - Low body energy reserves
 - Failure to acquire energy (Thorup et al., 2015)
 - Low birth weight piglets = rapid depletion

Energy needs of the newborn piglet

Ambient Energy		Sustained heat production autonomy		
temperature range	re range required	Normal birth weight piglet	IUGR piglet	
32-38°C	9.5 kJ/h/kg BW	31 h	5 h	
18-26°C	27 kJ/h/kg BW	15 h	3 h	
0-10°C	43 kJ/h/kg BW	58 h	7 h	

(Mellor and Cockburn, 1986)

Energy supplementation at birth

- Increases survival and growth (Decleck et al., 2016)
- Medium-chain fatty acids (Herpin et al., 2002; Lepine et al., 1989)
- Commercially available products

Assess the effects of energy supplementation Compare an elaborated product to a raw source of energy

PILOT STUDY

Methods

27 sows – 3 weeks batch farrow

Birth-Weight < 1.10 kg (30% total born)

0 KJ/2ml

74 KJ/2ml

71 KJ/2ml

Methods

- Piglets left on their dam
 - Random assignment within sow
 - Litter size = 13 piglets
- Targeted for birth weight < 1.10 kg
- Recruitment
 - Live birth
 - <3h post-partum (video camera)

```
Coconut = 35 piglets (M:F=0.84)
Water = 35 piglets (M:F=0.94)
Energyn = 34 piglets (M:F=1.13)
```


Data collection and analysis

Data collection:

- Weights: D0 (birth), D1, D7, D14, D21, Weaning
- Glucose: 24 h after supplementation (D1)
- Mortality: as occurred

- Statistics: General Linear Model
 - random effect of sow
 - repeated effect of day

Survival

Weights

Growth

Blood glucose

Discussion

- No effect of supplementation on survival, growth, or blood glucose content
 - Pilot study
 - High health standards piggery
 - 2 ml enough ? 71 74 KJ = 15h heat production

To be continued...

- Large scale study:
 - Extra treatment: no supplementation
 - Further measures:
 - » Baseline blood glucose content at birth
 - » Colostrum quality of sows
 - » Vitality of piglets
 - » Body temperature
 - » Cognitive abilities after weaning

THANK YOU

Moorepark pig research unit staff

Technicians: Oliver Clear

Research assistants: Aurelie Poidevin

This study was funded by the Irish Department of Agriculture, Food and the Marine, under the National Development Plan 2007-2013