Phenotypic and genetic relationship between litter birthweight characteristics, indicators of intrauterine growth restriction and piglet survival

S.M. Matheson¹, G.A. Walling², S.A. Edwards¹

¹ Newcastle University, ² JSR Genetics Ltd.
Risk factor for piglets

- Low birth weight piglets
- Industry-wide push for selection of increased litter size in breeding herds

- More piglets being born with reduced birth weight (Rutherford et al, 2013; Root et al, 2012)

What is a low birth weight piglet?

- Meta-analysis study of risk focusing on piglet outcomes
- Piglets with a birth weight ≤1.25kg are at a significant risk of impaired lifetime growth (Douglas et al, 2013)

![Diagram showing the percentage of piglets born in different weight categories]

Data from Multiplier herd 2016

- >1.80kg (high bwt)
- 1.25-1.80kg (normal bwt)
- <1.25kg (low bwt)

20959 piglets born

Roehe & Kalm, 2000
More than just low birth weight?

- Low birth weight piglets may be:
 - Small for gestational age (SGA)
 - Intrauterine growth restricted/retarded (IUGR)

- Intrauterine growth restricted (IUGR) piglets typically identified by birthweight

- However, birthweight does not indicate whether a piglet has been exposed to IUGR during development
More than just low birth weight?
How to recognise IUGR?

- Chevaux *et al* 2010 developed scoring system for identifying IUGR piglets based on head morphology
- ‘Brain sparing’ effects – prioritised brain development
- Foetal adaptive reaction to placental deficiency
Normal vs IUGR head shape
Data collection

- Data collection over 52 weeks
- Number of piglets – 21,159
 - Birth weight
 - Head shape
 - Cause of death (and date)
- 1,575 farrowings
 - 862 individual sows
 - Parity 1-6+
Birth weight – head shape
What is a low birth weight piglet?

Multiplier herd 2016

20959 piglets born

- >1.80kg (high bwt)
- 1.25-1.80kg (normal bwt)
- <1.25kg (low bwt)
Genetic selection approach:

- Two approaches:

- Piglet level selection:
 - Select on piglet head shape at birth

<table>
<thead>
<tr>
<th></th>
<th>Head shape 0/1</th>
<th>Birth weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head shape 0/1</td>
<td>0.05 ± 0.016</td>
<td>-0.62 ± 0.008</td>
</tr>
<tr>
<td>Birth weight</td>
<td>-0.72 ± 0.09</td>
<td>0.18 ± 0.040</td>
</tr>
</tbody>
</table>
Genetic selection approach:

- Two approaches:

 - Piglet level selection:
 - Select on piglet head shape at birth

 - Sow level selection:
 - Select on the proportion of piglet head shapes at birth within a litter
 - Proportion of IUGR-head shape piglets – IUGR-PROP
 - Within litter average birth weight – avBWT
 - Within litter standard deviation of birth weight – sdBWT
 - Litter size at birth – Littersize
 - Proportion of litter surviving to processing – SURV-PROP
Genetic selection approach – 2

Sow level - selection on IUGR-PROP

<table>
<thead>
<tr>
<th></th>
<th>IUGR-PROP</th>
<th>avBWT</th>
<th>sdBWT</th>
<th>Littersize</th>
<th>SURV-PROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUGR-PROP</td>
<td>0.19 ± 0.05</td>
<td>-0.52 ± 0.02</td>
<td>0.10 ± 0.02</td>
<td>0.23 ± 0.02</td>
<td>-0.18 ± 0.02</td>
</tr>
<tr>
<td>avBWT</td>
<td>-0.88 ± 0.07</td>
<td>0.38 ± 0.07</td>
<td>-0.06 ± 0.03</td>
<td>-0.59 ± 0.02</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>sdBWT</td>
<td>-0.23 ± 0.22</td>
<td>0.61 ± 0.17</td>
<td>0.13 ± 0.05</td>
<td>0.19 ± 0.03</td>
<td>-0.08 ± 0.03</td>
</tr>
<tr>
<td>Littersize</td>
<td>0.63 ± 0.19</td>
<td>-0.62 ± 0.14</td>
<td>-0.53 ± 0.27</td>
<td>0.11 ± 0.04</td>
<td>-0.11 ± 0.03</td>
</tr>
<tr>
<td>Surv-PROP</td>
<td>-0.64 ± 0.25</td>
<td>0.85 ± 0.20</td>
<td>0.49 ± 0.32</td>
<td>-0.63 ± 0.29</td>
<td>0.06 ± 0.04</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.19 ± 0.04</td>
<td>0.40 ± 0.03</td>
<td>0.17 ± 0.04</td>
<td>0.25 ± 0.03</td>
<td>0.17 ± 0.04</td>
</tr>
</tbody>
</table>

Asreml model – parity !r ANIMAL ide.(ANIMAL)
Conclusions

- Piglet survival is phenotypically impaired by large litter size and low piglet birth weight (nothing new)

- IUGR has detrimental effects on survival – these are in addition to the influence of birth weight

- IUGR using head shape as a simple phenotypic marker is amenable to genetic selection

- Selection at the sow level against IUGR could be highly effective in improving piglet survival

- Selection for lower proportion of IUGR in a litter has favourable genetic correlations with average birth weight and survival

- However, the genetic correlation with litter size is unfavourable
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613574.