Dietary L-arginine supply during early gestation promotes myofiber hyperplasia

J. G. Madsen1,2, C. Pardo1,2, M. Kreuzer2 and G. Bee1*
1 Agroscope Posieux, Posieux, Switzerland
2 ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
Known relationships

- Litter size is negatively correlated with average litter birth weight
- Birth weight is negatively correlated with
 - survival rate in the first week after birth
 - postnatal growth
 - carcass leanness
 - some meat quality traits

![Graph showing the relationship between litter size and average birth weight](image)
Total myofiber number (TFN)

ADG vs. TFN

\[r = 0.42 \]

G/F vs. TFN

\[r = 0.42 \]
• In early pregnancy, arginine and ornithine level elevated in porcine amniotic and allantoic fluid

• Associated with a high syntheses rate of nitric oxide and polyamine in the porcine placenta

• Key role in angiogenesis = placental and embryonic development
• Improved placental-fetal blood flow = improved fetal development

• Increased litter size without impact of birth weight

• Impact on muscle development?
Dietary manipulation of myofiber development

Average fetal weight (d 75 of gestation)

Semitendinosus muscle

Rhomboideus muscle

S/P ratio

CON
ARG

Animal (2010), 4:10, pp 1680–1687
ARGININE ↔ MYOGENESIS

- Improved placental-fetal blood flow = improved fetal development
- Increased litter size without impact of birth weight

Primary fibers serve as a scaffold for the formation of secondary fibers

Greater number primary fibers = greater number of secondary fibers

Wu et al. 2006

Bérard and Bee 2010
Hypothesis

Based on the association between dietary arginine supply, the extent of placental vascularization, the fetal nutrient supply and muscle development 2 working hypothesis were formulated:

• Hypothesis 1:
 • Supplementing L-arginine to an early gestational diet of the dams would promote hyperplasia leading to an increased number of myofibers in their offspring at birth.

• Hypothesis 2:
 • L-arginine is especially efficient in piglets suffering from IUGR.
Experimental design

Animals:
• Intact sows (I; litter size: > 15; naturally crowded)

• OL sows (OL; unilaterally oviduct ligated; uncrowded)

All sows (n = 10) were at the beginning of the experiment in their fifth parity

Diets:
• Control (C; 100 g/d alanine from d 14 to 28 of gestation)

• Arginine (Arg; 25 g/d arginine from d 14 to 28 of gestation)
Selection criteria at farrowing

from each litter
(n = 10 per parity)

female
(n = 2)

lightest
(n = 1)

medium
(n = 1)

male
(n = 2)

lightest
(n = 1)

medium
(n = 1)
Data and sample collection and analysis

Collection of data and samples at birth
- Litter size
- BtW of all piglets born

From the selected newborn piglets
- Weight of the heart, kidney, liver, lung and spleen
- Weight of the brain
- Weight of the semitendinosus and psoas major

Histological analyses in the semitendinosus
(mATPase staining after pre-incubation at pH 4.5 and 10.2)
- CSA
- Number of P- and S-fibers
- S/P ratio
- TNF
Transcript expression of
• myogenic factor 5 (MYF5)
• myogenic differentiation factor (MYOD)
• myogenin (MYOG)
• muscle-specific regulatory factor 4 (MRF4)
• myostatin (MSTN)
• AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2)
• insulin growth factor 2 (IGF2)
• insulin growth factor binding protein 5 (IGFBP5)
Results

Litter characteristics

<table>
<thead>
<tr>
<th>Trait</th>
<th>Crowded C</th>
<th>Crowded Arg</th>
<th>Uncrowded C</th>
<th>Uncrowded Arg</th>
<th>SEM</th>
<th>IUC</th>
<th>DIET</th>
<th>IUC x DIET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter size, n</td>
<td>15.5</td>
<td>15.3</td>
<td>10.5</td>
<td>11.9</td>
<td>1.71</td>
<td>0.26</td>
<td>0.72</td>
<td>0.66</td>
</tr>
<tr>
<td>Total born</td>
<td>13.1</td>
<td>14.5</td>
<td>9.1</td>
<td>10.3</td>
<td>1.49</td>
<td>0.23</td>
<td>0.46</td>
<td>0.96</td>
</tr>
<tr>
<td>Born alive</td>
<td>1.22</td>
<td>1.48</td>
<td>1.57</td>
<td>1.51</td>
<td>0.068</td>
<td>0.28</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>Birth weight, kg</td>
<td>1.24</td>
<td>1.50</td>
<td>1.59</td>
<td>1.53</td>
<td>0.068</td>
<td>0.28</td>
<td>0.22</td>
<td>0.13</td>
</tr>
<tr>
<td>STD</td>
<td>0.24</td>
<td>0.25</td>
<td>0.18</td>
<td>0.14</td>
<td>0.056</td>
<td>0.41</td>
<td>0.87</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Results

Birth weight of selected piglets

DIET, $P = 0.07$

IUC, $P < 0.01$

DIET x IUC $P = 0.14$

<table>
<thead>
<tr>
<th></th>
<th>Crowded</th>
<th>Uncrowded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>1.9</td>
</tr>
<tr>
<td>kg</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Results

Morphometric measures

<table>
<thead>
<tr>
<th>Trait expressed in g/100 g birth weight</th>
<th>Crowded C</th>
<th>Arg</th>
<th>Uncrowded C</th>
<th>Arg</th>
<th>SEM</th>
<th>IUC</th>
<th>DIET</th>
<th>IUC x DIET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>0.70</td>
<td>0.67</td>
<td>0.67</td>
<td>0.65</td>
<td>0.02</td>
<td>0.49</td>
<td>0.03</td>
<td>0.72</td>
</tr>
<tr>
<td>Liver</td>
<td>2.21</td>
<td>2.47</td>
<td>2.78</td>
<td>2.77</td>
<td>0.18</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.10<sup>b</sup></td>
<td>0.09<sup>a</sup></td>
<td>0.09<sup>ab</sup></td>
<td>0.09<sup>ab</sup></td>
<td>0.01</td>
<td>0.67</td>
<td>0.18</td>
<td>0.02</td>
</tr>
<tr>
<td>Lung</td>
<td>1.47</td>
<td>1.39</td>
<td>1.31</td>
<td>1.27</td>
<td>0.11</td>
<td>0.36</td>
<td>0.25</td>
<td>0.76</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.74</td>
<td>0.72</td>
<td>0.80</td>
<td>0.82</td>
<td>0.04</td>
<td>0.27</td>
<td>0.76</td>
<td>0.40</td>
</tr>
<tr>
<td>Brain</td>
<td>2.87</td>
<td>2.53</td>
<td>2.47</td>
<td>2.50</td>
<td>0.32</td>
<td>0.62</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>Brain: liver weight ratio</td>
<td>1.36</td>
<td>1.12</td>
<td>0.94</td>
<td>0.92</td>
<td>0.22</td>
<td>0.27</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>Semitendinosus</td>
<td>2.09</td>
<td>2.08</td>
<td>2.19</td>
<td>2.28</td>
<td>0.11</td>
<td>0.33</td>
<td>0.42</td>
<td>0.34</td>
</tr>
<tr>
<td>Psoas major</td>
<td>2.06</td>
<td>2.14</td>
<td>2.31</td>
<td>2.39</td>
<td>0.14</td>
<td>0.28</td>
<td>0.28</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Results

Muscle area

Crowded Uncrowded

$m^2 \times 10^{-7}$

dark portion

- C
- Arg

light portion

- C
- Arg

whole muscle

- C
- Arg

Arginine supplementation increased CSA ONLY in an uncrowded environment

Arginine supplementation resulted in larger CSA

OVERALL arginine supplementation increased CSA of the ST

Results

Muscle area

- DIET, $P < 0.01$
- IUC, $P = 0.08$
- DIET x IUC $P < 0.01$

- DIET, $P < 0.01$
- IUC, $P = 0.24$
- DIET x IUC $P = 0.60$

- DIET, $P < 0.01$
- IUC, $P = 0.14$
- DIET x IUC $P = 0.74$
Results

Myofiber number

dark portion

- **C**
- **Arg**

ARGinine had no impact on myofiber number

light portion

- **C**
- **Arg**

ARGinine supplementation increased myofiber number

whole muscle

- **C**
- **Arg**

OVERALL ARGinine increased myofiber number

<table>
<thead>
<tr>
<th>Condition</th>
<th>Myofiber Number</th>
<th>DIET, P</th>
<th>IUC, P</th>
<th>DIET x IUC, P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncrowded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>> 0.01</td>
<td>> 0.24</td>
<td>> 0.23</td>
</tr>
<tr>
<td>Arg</td>
<td></td>
<td>< 0.02</td>
<td>< 0.23</td>
<td>< 0.78</td>
</tr>
</tbody>
</table>

Notes:

- DIET, P = 0.13
- IUC, P = 0.88
- DIET x IUC, P = 0.23
- DIET, P = 0.02
- IUC, P = 0.23
- DIET x IUC, P = 0.78
- DIET, P < 0.01
- IUC, P = 0.24
- DIET x IUC, P = 0.23
Results

Gene expression of myogenensis-related genes

<table>
<thead>
<tr>
<th>Trait</th>
<th>Crowded C</th>
<th>Crowded Arg</th>
<th>Uncrowded C</th>
<th>Uncrowded Arg</th>
<th>SEM</th>
<th>IUC</th>
<th>DIET</th>
<th>IUC × DIET</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF2</td>
<td>2.36</td>
<td>1.55</td>
<td>0.91</td>
<td>1.70</td>
<td>0.555</td>
<td>0.487</td>
<td>0.967</td>
<td>0.950</td>
</tr>
<tr>
<td>IGFBP5</td>
<td>5.63</td>
<td>5.65</td>
<td>2.32</td>
<td>4.62</td>
<td>2.190</td>
<td>0.489</td>
<td>0.233</td>
<td>0.297</td>
</tr>
<tr>
<td>MSTN</td>
<td>1.60</td>
<td>1.64</td>
<td>0.46</td>
<td>0.98</td>
<td>1.754</td>
<td>0.351</td>
<td>0.232</td>
<td>0.110</td>
</tr>
<tr>
<td>MYF5</td>
<td>0.35</td>
<td>0.42</td>
<td>0.24</td>
<td>0.28</td>
<td>1.694</td>
<td>0.631</td>
<td>0.531</td>
<td>0.159</td>
</tr>
<tr>
<td>MYF6</td>
<td>0.58</td>
<td>0.65</td>
<td>1.18</td>
<td>0.98</td>
<td>0.576</td>
<td>0.623</td>
<td>0.859</td>
<td>0.631</td>
</tr>
<tr>
<td>MYOD1</td>
<td>2.36</td>
<td>1.84</td>
<td>0.68</td>
<td>0.48</td>
<td>2.143</td>
<td>0.223</td>
<td>0.340</td>
<td>0.418</td>
</tr>
<tr>
<td>MYOG</td>
<td>0.94</td>
<td>0.70</td>
<td>1.32</td>
<td>1.11</td>
<td>0.255</td>
<td>0.333</td>
<td>0.168</td>
<td>0.417</td>
</tr>
<tr>
<td>PRKAA2</td>
<td>0.72b</td>
<td>1.04b</td>
<td>0.26a</td>
<td>0.15a</td>
<td>0.194</td>
<td>0.024</td>
<td>0.264</td>
<td>0.091</td>
</tr>
</tbody>
</table>

\textit{PRKAA2} (inhibitor of muscle protein synthesis) greater expression related to
- lower BtW
- lower muscle weight
Supplementing L-arginine early in gestation
• reduces the negative impacts of IUGR,
 • increased hyperplasia, birth weight and STM area.

• as muscle area increased more than TNF → prenatal myofiber hypertrophy

• not especially efficient in L-BtW piglets