What are Antimicrobials used for?
- Medicines that target pathogenic organisms that cause disease (i.e. antimicrobial)
- May kill or stop the growth/spread of a pathogen

What is AMR?
- Microbes develop resistance to antimicrobials and thus become ineffective
- Potentially causing future risk to current everyday medical procedures
- Risk to human and animal health

How can we prevent AMR?
- Important to record antimicrobial use
- Avoid using against viruses
- Use for treatment not prevention
- Always use as prescribed

Focus more on preventative strategies
- Enhanced biosecurity
- Implement vaccination programs
- Improved husbandry management

IRELAND’S NATIONAL ACTION PLAN (iNAP) ON ANTIMICROBIAL RESISTANCE 2017-2020

Prudent use
- Right animal
- Right drug
- Right dose
- Right duration

ESVAC (European Surveillance of Veterinary Antimicrobial Consumption)
Calf health treatments analysed from birth to 6 mo. of age on 79 suckler beef and 44 dairy farms

<table>
<thead>
<tr>
<th>Calves</th>
<th>Number of calves</th>
<th>Antimicrobial treatments</th>
<th>mg/PCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suckler beef</td>
<td>3204</td>
<td>841</td>
<td>7.25</td>
</tr>
<tr>
<td>Dairy</td>
<td>5358</td>
<td>929</td>
<td>7.11</td>
</tr>
</tbody>
</table>

mg/PCU (mg of antimicrobials population correction unit)

Antimicrobial usage (%) in beef and dairy calves treated for disease from birth to 6-mo of age

<table>
<thead>
<tr>
<th></th>
<th>Beef</th>
<th>Dairy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 1 mo</td>
<td>1 to 3 mo</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5</td>
</tr>
</tbody>
</table>

Antimicrobial usage on beef farms

<table>
<thead>
<tr>
<th>Antimicrobial class</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st & 2nd GC</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lincosamines</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>3rd & 4th GC</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>Macrolides</td>
<td>38</td>
<td>4.5</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>63</td>
<td>7.5</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>94</td>
<td>11.2</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>97</td>
<td>11.5</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>128</td>
<td>15.2</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>202</td>
<td>24.0</td>
</tr>
<tr>
<td>Penicillins</td>
<td>210</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Antimicrobial usage on dairy farms

<table>
<thead>
<tr>
<th>Antimicrobial class</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st & 2nd GC</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Lincosamines</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>3rd & 4th GC</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>Macrolides</td>
<td>20</td>
<td>2.2</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>79</td>
<td>8.5</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>161</td>
<td>17.3</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>160</td>
<td>17.2</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>159</td>
<td>17.1</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>181</td>
<td>19.5</td>
</tr>
<tr>
<td>Penicillins</td>
<td>164</td>
<td>17.7</td>
</tr>
</tbody>
</table>

1st & 2nd AND 3rd & 4th generation cephalosporins
Breeding suckler cows by AI

Advantages of AI
- Access to high genetic merit proven maternal and terminal bulls
- Match cows/heifers with specific bulls
 - Easy calving bulls for young cows/heifers
 - Maternal bulls to produce replacements
- Minimises risk of an infertile bull
- Removes hazard of bull
- No specialised housing

Disadvantages of AI
- Heat detection - labour
- Cow assembly for AI
- Costs
 - €30-35/cow
 - €5-15/straw
 - Repeats?
- Variable results

Key to successful use of AI
- Heat Detection
- Cow Assembly

Conception rates usually excellent (60-70%) in suckler cows and heifers
Breeding suckler cows by AI

Heat Detection
- Commitment & Understanding of signs of heat
- Use Aids

Cow Assembly
- Heat check cows:
 - Early morning & late evening
 - AI timing 0-24 hours after heat onset
 - Once /day adequate
 - AI technique critical for DIY operators

Primary Sign of Heat
- Gate
 - To holding pen and crush
 - Electric Fence
 - Water
 - Meal
 - Roadway

Teaser Bull

Heat detection difficult in small herds and as more cows become pregnant

<table>
<thead>
<tr>
<th>No. Mounts</th>
<th>No. Heifers in Heat Simultaneously</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
</tbody>
</table>

No. Heifers in Heat Simultaneously
Schmallenberg Virus

- A midge-borne virus that can cause mild fever & milk drop in cattle, but also capable of causing severe foetal deformity and abortion if cattle or sheep are infected for the first time during early pregnancy.
- Now accepted as an endemic disease in Ireland, with proven exposure in all 32 counties on the island.
- Irish cattle (& sheep) have probably acquired reasonably good ‘herd immunity’ now through natural exposure - however the disease introduces new uncertainty to farming as gaps in this immunity may appear in the future.
- Schmallenberg virus is likely to continue to cause low impact overall, but is capable of causing severe losses on individual holdings, especially where animals are in early pregnancy and calving (or lambing) is synchronised.
- A Schmallenberg vaccine has been developed but not currently available in Ireland (commercial reasons related to low uptake & demand).
Fatal bloat associated with Sarcina-like bacteria in artificially-reared dairy calves

• A new disease to Ireland detected on several occasions in the past two years & being actively researched by DAFM Veterinary Laboratory Service staff

• This causes inflammatory changes & bloat in the stomach of young calves, and has been associated with fatalities

• Early indications show an association with the use of automatic milk replacer feeders & sub-optimal hygiene/sanitation of feeder hardware.

• The arrows show the characteristic cuboidal bacteria in microscopic cross-sections

• The Department of Agriculture, Food & the Marine runs a network of Regional Veterinary Laboratories at Athlone, Cork, Kilkenny, Limerick & Sligo

• These laboratories offer post mortem and field investigation service to Irish livestock farmers through their veterinary surgeons

• The data generated by this service is the basis of Ireland’s scanning surveillance capacity to detect new & emerging diseases

• This is also how the Department monitors endemic disease patterns in Irish livestock

• These boards show some current & recent examples of new & emerging diseases confirmed by this service
Poisonings associated with the use of recycled containers for livestock feed or drinking water

- Recycled containers may not be fully traceable - buyer beware!

- Remember that the label ‘food grade’ on industrial containers relates to the quality of the materials used in its construction – not the contents!

- Even when containers do originate in the food industry, remember some food ingredients are hazardous in concentrated form. RVLS have investigated and confirmed fatal poisonings from residues of certain concentrated food ingredients in recycled containers.

- Use purpose-made animal feed containers, troughs & drinkers & do not use recycled industrial containers, tanks and bags for any livestock-related purpose on your farm.

- **REMEMBER: when you bring something onto your farm you are bringing it into the food chain!**

I.B.C. bulk containers for sale online in Ireland with HazMat (hazardous material) warningstickers still in place. If these are not present, have they been removed? Do you really know what you are buying?
Wormer resistance on dairy calf-to-beef farms

Failure to effectively treat for gut worms had a negative impact on performance of first grazing season calves

16 dairy calf-to-beef farms tested for gut worms

Results: resistance to 3-ML (ivermectin) 1-BZ (fenbendazole)

<table>
<thead>
<tr>
<th>Wormer</th>
<th>Species</th>
<th>Resistance on farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-ML</td>
<td>Cooperia</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Ostertagia</td>
<td>82%</td>
</tr>
<tr>
<td>1-BZ</td>
<td>Cooperia</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>Ostertagia</td>
<td>91%</td>
</tr>
</tbody>
</table>

Key Management tips
- Develop a sustainable worm control plan
- Treat animals only when necessary based on:
 - faecal egg count
 - reliable animal performance indicators
- Know what wormers are effective on your farm
IBR and Bovine Respiratory Disease: whole herd approach

Spread of IBR following reactivation and shedding of virus from carrier animals.

Latent IBR Carrier

Effect of pneumonia on finishing, slaughter dates

- No Pneumonia
- Not Sick
- Sick
- Very Sick

Very sick cattle take 59 days longer to finish than healthy cattle
IBR and Bovine Respiratory Disease; prevention is key

The Stack Effect

IBR Trachea

Vaccine Immunity

RSV maternal antibodies in suckler beef calves

IBR maternal antibodies in suckler beef calves from cows vaccinated for IBR
Increasing the usage of AI

Spring calving suckler herds – Teagasc

- 100% AI - 10 week breeding season
- Once daily AI (12pm) – easy access to handling area for drafting
- Scan 30 days after commencement of breeding and 30 days after conclusion of breeding
- ~ 90% pregnancy rate to AI

Use of high EURO star index bulls

- Team of bulls (3-4 bulls) selected before the start of the breeding season
- 5 stars for terminal traits (e.g. ZGM, LM4093, FSZ; High Reliability >80%)
- Low calving difficulty (< 7% for mature cows and <6% for 1st and 2nd calvers)

Heat detection

- Cows checked 5 times daily – all signs of heat recorded
- Vasectomised bulls – 12-15 month old (chin ball attached). One bull per 50 cows
- Tail Paint – all cows painted 3 weeks before breeding. Change colour after breeding.
Maternal Herd

2014-2017 PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>Beef x Dairy</th>
<th>Beef</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Replacement Index (€)</td>
<td>134</td>
<td>78</td>
</tr>
<tr>
<td>Live weight (kg)</td>
<td>562</td>
<td>569</td>
</tr>
<tr>
<td>Pregnancy rate (%)</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>Calving Interval (d)</td>
<td>363</td>
<td>361</td>
</tr>
<tr>
<td>Calf birth weight (kg)</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Calf weaning weight (kg)</td>
<td>287</td>
<td>290</td>
</tr>
<tr>
<td>Calf ADG (kg/d)</td>
<td>1.12</td>
<td>1.13</td>
</tr>
<tr>
<td>Milk yield (kg/d)</td>
<td>8.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Progeny carcass weight (kg)</td>
<td>322</td>
<td>327</td>
</tr>
</tbody>
</table>

Phase 1:
- Suckler cross
- Dairy cross
- High index
- Low index

Phase 2:
- Suckler cross
- Dairy cross
- ‘Elite’ Top 10%
 - 5 star >€120
- Average 3 star
 - €55 to €73

- Born autumn 2016/ spring 2017
- Genomically tested (min. rel. 20%)
- Angus, Limousin and Simmental AI sires
- Breeding season:
 - 100% AI in 13 weeks
 - 4.1% calving ease CH sire (93% rel.)
 - 100% served @ 6 weeks
About Johne’s Disease

• Johne’s disease is an incurable bacterial disease that causes production losses in beef herds.

Signs
• Feed-conversion efficiency is reduced
• Weight loss
• Scour
• Emaciation and death

Key point
Calves can become infected early in life by drinking milk or eating food contaminated with the bacterium called MAP, which is shed in the dung or milk of infected adult cattle.

The stages of Johne’s disease infection

• Infection establishes in a herd when an infected animal is introduced.
• That animal starts to shed bacteria in its dung around 2 years of age but may continue to look healthy.
• As the disease progresses, clinical signs become apparent and other animals have been exposed and infected.
Johne’s Disease Infection in Beef Herds

Johne’s disease prevention starts with effective herd biosecurity

Limit animal introductions or only introduce animals from herds that are test-negative.

BREAK THE CYCLE OF SPREAD

- Test all adult animals regularly and remove any infected animals
- Calve heifers and young cows in their age groups and separately from older cows
- Remove calves and their dams from the calving area as quickly as possible to reduce exposure of the calf to a high-risk environment.

Remember

- Calves are most susceptible to infection, which usually occurs within the first few weeks of life.
- Keep the calf environment clean.
- Keep test-positive cows away from calves.
- Remove infected animals from the herd.