Bacteriophages are viruses that specifically infect bacterial cells (Figure 1). First discovered in 1915 by Frederick Twort, initial research showed their promise in the targeted killing of pathogenic, disease-causing bacteria. With the discovery of penicillin in 1928 by Alexander Fleming, the research focus turned more to drug therapy. However, in recent years, due to the increasing emergence of antibiotic resistance in pathogenic bacteria, the focus has again turned to the use of bacteriophages to inactivate these bacteria.

In the food industry, controlling the levels of food-borne pathogens is essential to avoid public health issues and for the safety of the products in order to prevent recalls/withdrawals. Listeria monocytogenes is a pathogen widely distributed in nature and has the ability of survive many different and hostile environments. It can cause listeriosis, mainly in immunocompromised groups such as infants, the elderly and pregnant women. The symptoms can vary from gastroenteritis to abortion and encephalitis, with a mortality rate that can be up to 30%. For those reasons, controlling the presence of L. monocytogenes in the food industry is important. Bacteriophages have several characteristics that make them attractive agents for controlling food-borne pathogens. These include their self-perpetuating nature, stability, and specificity in targeting the host bacterium without impacting the other microflora. In food production/processing, bacteriophages have potential application directly on the food, or in controlling the pathogen in the food production/processing environment; for example, in mushroom production. The use of bacteriophages directly on food has been approved by the United States Food and Drug Administration, and in some cases by the European Union, through the use of products such as the bacteriophage-based ListShield and Listex. However, the use of bacteriophages to control L. monocytogenes in the production/processing environment has not been fully assessed.

Endolysin theory
Endolysins (lysins) are phage enzymes that allow new bacteriophage particles to be released from the host cell through degradation of the cell wall. Along with another enzyme, called a holin, the bacteriophages can literally create holes in the inner cell membrane, allowing the endolysin to cleave specific residues of the peptidoglycan structure of the cell wall and destroy it. Endolysins are usually composed of an active domain (amidase) and a cell wall binding domain, specific for the host bacteria. It has been shown previously that, when purified, endolysins, which can be purified from virulent or temperate bacteriophages, have the ability to kill...
the target bacteria by ‘lysis from without’. Such evidence is the basis for the exploitation of a bacteriophage-based protein targeting L. monocytogenes in the food production/processing environment.

Work at Moorepark

At Moorepark, temperate bacteriophages specific for L. monocytogenes were isolated from wild mushroom samples. The genome of one of these bacteriophages, phage 293, was sequenced and analysed for the presence of an endolysin gene. The active, or amidase, domain of the endolysin was cloned in E. coli in order to produce large amounts of purified protein.

The advantage of this technology, which produces recombinant proteins, is that additional genes that would compromise the safety of the process are not carried. The purified enzyme fragment has been tested in in vitro experiments against L. monocytogenes, demonstrating antimicrobial activity (Figure 2). Tests are still ongoing to characterise the enzyme and its anti-listerial activity against L. monocytogenes biofilms. The pilot-scale mushroom production facility at Ashtown will be used as a model food production facility to assess the efficacy of the purified amidase in vivo.

Phage biocontrol: some considerations

As with other pathogen control agents in the food industry, bacteriophage-derived products must fulfil certain criteria if they are to be applied:

- effectiveness demonstrated – the efficacy of the phage-derived products depends on the type of matrix they are applied on, and on the concentration of pathogens and bacteriophages or bacteriophage-derived proteins;
- regulatory approval must be obtained;
- production and purification should be economic – large-scale production is possible with endolysins; and,

safety – there are no known undesirable effects related to bacteriophage applications, although research is still ongoing.

Acknowledgements

This study was supported by the Department of Agriculture, Food and the Marine under the Food Institutional Research Measure project 14F881.

Further reading


Authors

Vincenzo Penonne
PhD Student, Food Safety Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork

Kieran Jordan
Principal Research Officer, Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork

Olivia McAuliffe
Principal Research Officer, Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork

Kaye Burgess
Senior Research Officer, Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15

Correspondence: kaye.burgess@teagasc.ie