Glycomacropeptide: potential to reduce infection and improve intestinal cell barrier function

Key external stakeholders:
Infant formula companies, the Irish and international cheese industry, the Irish and international dairy processing industry, Irish dairy exporter organisations and functional and medical food manufacturers

Practical implications for stakeholders:
Many processes have been developed for large-scale production of Glycomacropeptide (GMP) from whey and dairy companies now supply GMP as ingredient (e.g. Arla Foods, Agropur ingredients and Nestle). GMP has mainly been used as an ingredient in medical foods for the nutritional management of phenylketonuria. However, alternative uses for GMP provide a new dimension for the profitable utilization of cheese whey by the dairy industry. Teagasc, in collaboration with NUIG have identified the potential of GMP to act as an anti-infective compound that reduces the threat of E. coli infection, positively modulates immune associated gene expression and improves barrier function in human cells. This research highlights the potential of GMP as a functional ingredient in consumer products, such as in functional beverages and infant formula aimed at providing daily protection from infection and improving gastrointestinal health.

Main results:
- GMP significantly reduced E. coli (enteropathogenic and enterohemorrhagic strains) association with human intestinal cells in a concentration dependent manner.
- GMP does not target human cell receptors but instead a direct GMP-bacterial interaction is likely responsible for the ant-infective activity.
- GMP reduced pathogen translocation and lead to a decrease in trans-epithelial electrical resistance (TEER) and is therefore an effective in vitro inhibitor of epithelial injury caused by E. coli
- GMP majorly influenced intestinal expression of immune-modulatory chemokines and cytokines highlighting the potential of GMP to contribute to the development and maturation of the intestinal immune responses at the genetic level.

Opportunity / Benefit:
GMP was demonstrated to prevent E. coli infection, improve barrier function and influence immune related gene expression in vitro and hence the inclusion of this bioactive glycopeptide in functional foods may benefit the general population, as well as immuno-compromised individuals, including infants and the elderly.

Collaborating Institutions:
Teagasc, National University of Ireland Galway.

Teagasc project team: Dr. Rita Hickey (Teagasc PI), Shane Feeney and Dr. Joseph Thomas Ryan
External collaborators: Prof. Lokesh Joshi (Project PI) and Dr. Michelle Kilcoyne (NUIG)
1. Project background:
Glycomacropeptide (GMP) is a C-terminal part (residues 106–169) of kappa-casein which is released in whey during cheese making by the action of chymosin. In recent years, interest in GMP has increased, as the peptide exhibits biological and nutritional properties which have been linked to a number of health benefits. For instance, the peptide is known to inhibit viral or bacterial adhesion to cells, promote proliferation of beneficial bacteria, neutralize enterotoxin, inhibit gastrointestinal secretions and exert immune regulation and plays a role in the nutritional management of phenylketonuria and has also been shown to stimulate cholecystokinin release and reduce gastric secretion. Many of these bioactivities have been attributed to the O-linked glycosylation associated with GMP and particularly the sialic acid (N-acetylenuraminic acid) component.

However, few studies have examined the exact mechanisms by which GMP exerts its beneficial effects particularly at the genetic level. The ability of GMP to inhibit the adhesion of a variety of pathogenic *Escherichia coli* strains to HT-29 and Caco-2 intestinal cell lines and improve barrier function was examined. In addition, the transcriptional response of HT-29 cells to GMP was investigated to gain insight into how GMP contributes to immunomodulation in the gastrointestinal tract.

2. Questions addressed by the project:
- Can we identify novel bioactivities associated with GMP which have the potential to protect against infection and modulate immune function?
- Can we establish the mechanism by which GMP prevents *E. coli* adherence to human cells and determine if it is through either direct (bacterial binding) or indirect (cell-line binding) inhibition?
- Can we determine the ability of GMP to suppress pathogen induced tight junction (TJ) barrier function impairment?
- Can we determine how GMP influences immune function associated gene expression in the gastrointestinal tract?
- Can we find a way to add value to traditional foods such as cheese whey?

3. The experimental studies:
To further explore if bovine GMP can offer an approach to prevent *Escherichia coli* infection by inhibiting attachment of the pathogen to host cells, we employed a commercially available GMP ingredient (kindly donated by Agropur Food Ingredients) which was rich in sialic acid (8%). We investigated the ability of this ingredient to prevent the association of several enteropathogenic and enterohaemorrhagic *E. coli* strains with human colonic adenocarcinoma, HT-29 and Caco-2 cells using anti-infective assays.

To investigate the effect of GMP on *E. coli* translocation, transwell inserts containing Caco-2 cells were employed. To confirm the formation of a tight cell monolayer in the presence of GMP, TEER measurements were carried out on Caco-2 cells. Microarray analyses were employed to investigate the response of colonic epithelial cells (HT-29) to GMP at the genetic level. The microarray data was further validated by means of real-time-PCR.

4. Main results:
- We demonstrated that the GMP ingredient reduced *E. coli* association with HT-29 and Caco-2 cells in a concentration dependent and strain specific manner.
- The results suggest that GMP does not target host cell receptors for *E. coli* and instead a direct GMP-bacterial interaction is likely responsible for the ant-infective activity.
- GMP is capable of maintaining the structural integrity of Caco-2 tight junctions. Furthermore, GMP delays the paracellular movement of *E. coli* through the tight junctions of Caco-2 monolayers.
- GMP majorly influenced the expression of immune-modulatory chemokines and cytokines in HT-29 cells including chemokine (C–X–C motif) ligand 1 (CXCL1), chemokine (C–X–C motif) ligand 2 (CXCL2), chemokine (C – C motif) ligand 20 (CCL20), chemokine (C – X – C motif) ligand 10 (CXCL10) and interleukin 17C (IL-17C). Other important regulatory genes differentially regulated by GMP include DUOX2, CAMP, IL-33, GJB6 and IL-20Rb.

Contact
Rita Hickey
Email: rita.hickey@teagasc.ie.

http://www.teagasc.ie/publications/
5. **Opportunity/Benefit:**
Our findings suggest that GMP is effective at preventing infection *in vitro* and may present a new approach to mitigate the adverse health effects caused by *E. coli* infections in humans. The consumption of GMP may promote the maturation of the naive cytokine responses and contribute to increased immunological well-being in infants and adults, especially the immunocompromised. This knowledge should allow manufacturers of whey ingredients, infant formula and nutritional beverages to develop new products centred on scientifically proven functional attributes.

6. **Dissemination:**

Main publications:

Book Chapter:

Conference proceedings:

7. **Compiled by:** Dr. Rita Hickey